

Differential gene expression (DGE) analysis

- FindAllMarkers(): implemented in Seurat, defaults to Wilcoxon test, to detect genes that are "markers" for cell clusters. Finds genes that are DE between 1 cluster and all other cells.
- FindMarkers(): to perform pairwise DGE analysis, eg between cluster 1 and cluster 2, defaults to Wilcoxon test.

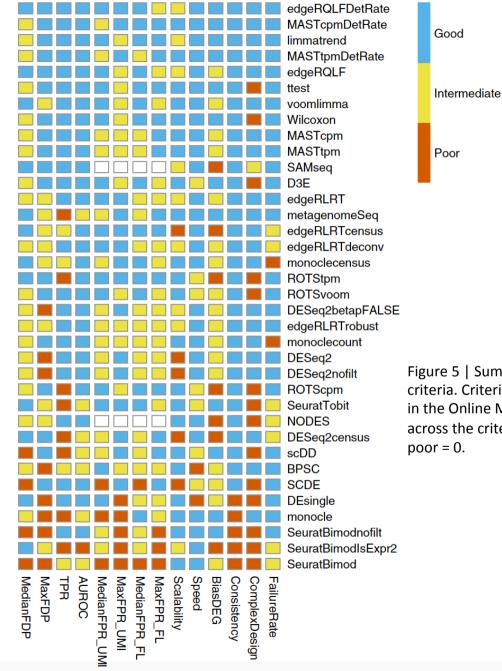
What is the ideal DGE analysis method?

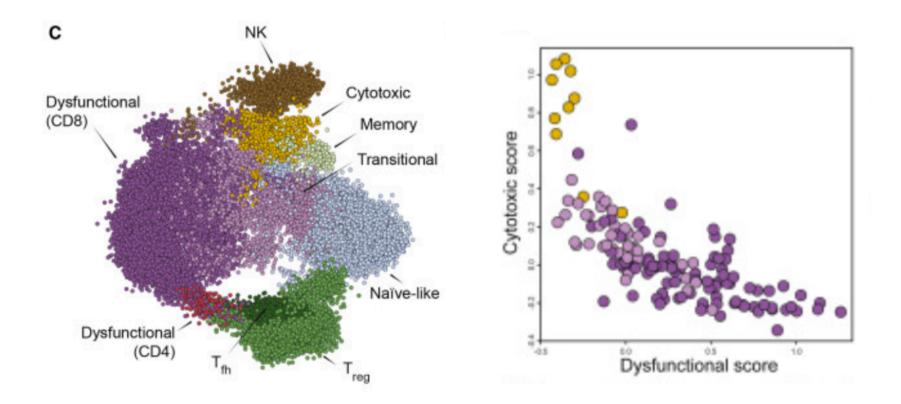
Bias, robustness and scalability in single-cell differential expression analysis

Charlotte Soneson^{1,2} & Mark D Robinson^{1,2}

Many methods have been used to determine differential gene expression from single-cell RNA (scRNA)-seq data. We evaluated 36 approaches using experimental and synthetic data and found considerable differences in the number and characteristics of the genes that are called differentially expressed. Prefiltering of lowly expressed genes has important recent studies suggest that the optimal metl the number of cells and strength of the signa not initially developed for scRNA-seq analysis In this study, we used processed data sets, other sources, to evaluate DE methods in sc study expands the number of methods and ra

https://www.nature.com/articles/nmeth.4612



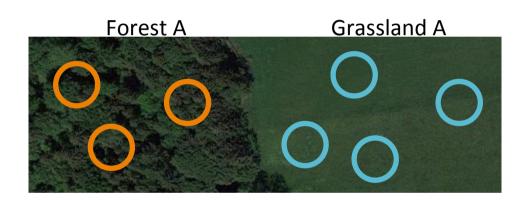

Figure 5 | Summary of DE method performance across all major evaluation criteria. Criteria and cutoff values for performance categories are available in the Online Methods. Methods are ranked by their average performance across the criteria, with the numerical encoding good = 2, intermediate = 1, poor = 0.

https://github.com/csoneson/conquer_comparison/blob/master/scripts/apply_edgeRQLFDetRate.R

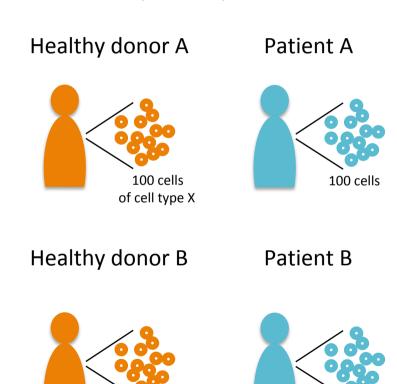
limma or edgeR

- Methods designed for bulk RNA seq analysis
- Can be used to include batch effects in model as covariates
- Can be used to analyze factorial design such as genotype x treatment

MetaCell - K-nn graph partitions

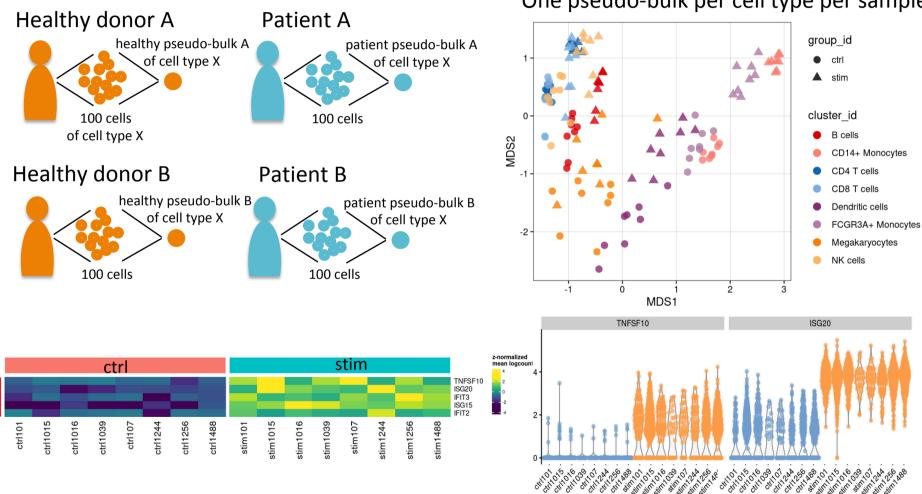


MetaCell method: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1812-2 Application to CD8 T cells: https://www.sciencedirect.com/science/article/pii/S009286741831568X


Problem of pseudo-replication?

7 or 2 replicates per ecosystem?

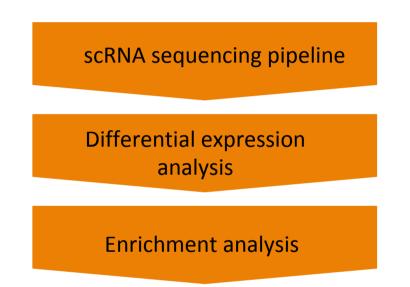
How many independent replicates do we have, How many independent replicates do we have, 200 or 2 replicates per condition?


Grassland B Forest B 1 - S

100 cells

100 cells

Pseudo-bulk DE analysis: muscat

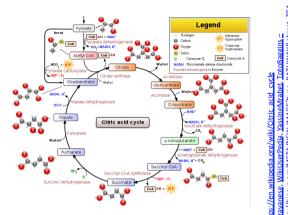


One pseudo-bulk per cell type per sample

https://www.bioconductor.org/packages/release/bioc/vignettes/muscat/inst/doc/analysis.html

Question on DE analysis

Once we have identified DE genes, what do we do?


Several methods available, e.g.:

- over-representation analysis (ORA)
- gene set enrichment analysis (GSEA)

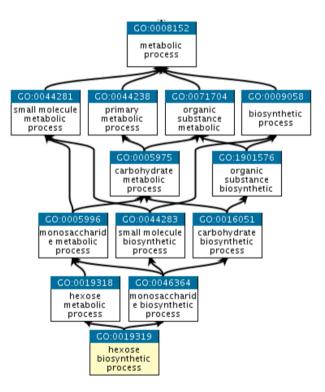
Goal: to gain biologicallymeaningful insights from long gene lists

- test if differentially expressed genes are enriched in genes associated with a particular function
- approaches: test a small number of gene sets, or a large collection of gene sets

What is a gene set?

- Genes working together in a pathway (e.g. energy release through Krebs cycle)
- Genes located in the same compartment in a cell (e.g. all proteins located in the cell nucleus)
- Proteins that are all regulated by a same transcription factor
- Custom gene list that comes from a publication and that are down-regulated in a mutant
- List of genes that contain SNPs associated with a disease
- etc!
- Several gene sets are grouped into Knowledge bases

Gene ontology

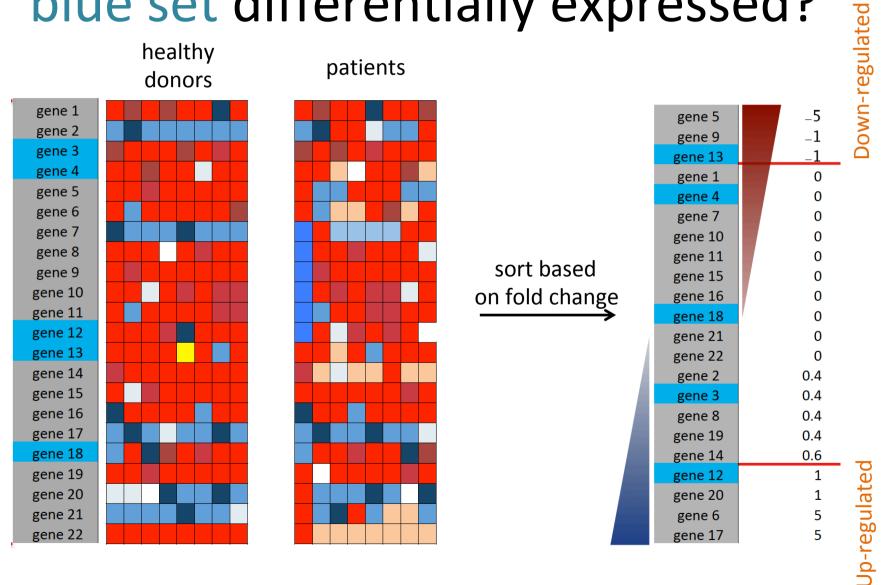

<u>http://geneontology.org/</u>

The mission of the GO Consortium is to develop a comprehensive, computational model of biological systems, ranging from the molecular to the organism level, across the multiplicity of species in the tree of life.

The Gene Ontology (GO) knowledgebase is the world's largest source of information on the functions of genes.

Different ontologies:

- Biological processes
- Cellular components
- Molecular functions



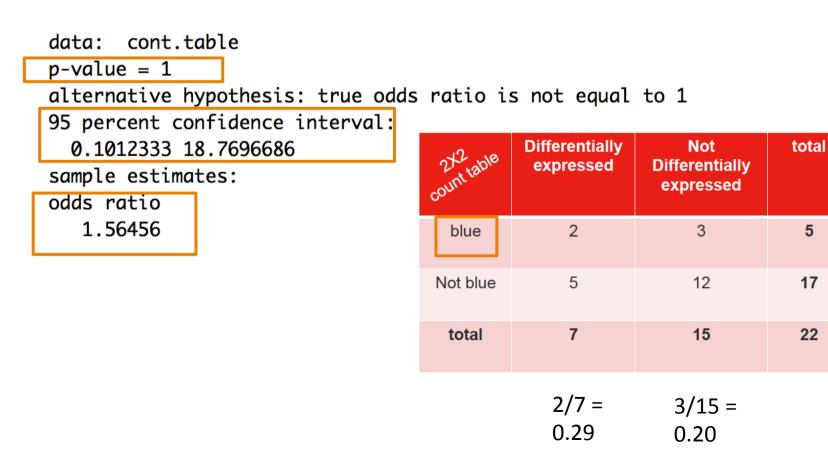
Sources of gene sets

- Online:
- MSigDB: database containing several types of gene set lists
- https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
 - GO
 - hallmark
 - published gene sets
- KEGG (bi-directional eg mTOR signaling): <u>https://www.kegg.jp/kegg/pathway.html</u>
- Reactome <u>https://reactome.org/</u>
- WikiPathways

https://www.wikipathways.org/index.php/WikiPathways

Are the genes belonging to the blue set differentially expressed?

Fisher's exact test in R


5

17

22

> cont.table<-matrix(c(2,3,5,12), ncol=2, byrow = T) > fisher.test(cont.table)

Fisher's Exact Test for Count Data

Which gene sets are differentially expressed?

gene 1 gene 2 gene 3 gene 4 gene 5 gene 6 gene 7 gene 8 gene 9 gene 10 gene 11 gene 12 gene 13 gene 14 gene 15 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21 gene 22
gene 3 gene 4 gene 5 gene 6 gene 7 gene 8 gene 9 gene 10 gene 11 gene 12 gene 13 gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 4 gene 5 gene 6 gene 7 gene 8 gene 9 gene 10 gene 11 gene 12 gene 13 gene 14 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 5 gene 6 gene 7 gene 8 gene 9 gene 10 gene 11 gene 12 gene 13 gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 6 gene 7 gene 8 gene 9 gene 10 gene 11 gene 12 gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 7 gene 8 gene 9 gene 10 gene 11 gene 12 gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 8 gene 9 gene 10 gene 11 gene 12 gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 9 gene 10 gene 11 gene 12 gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 10 gene 11 gene 12 gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 11 gene 12 gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 12 gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 13 gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 14 gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 15 gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 16 gene 17 gene 18 gene 19 gene 20 gene 21
gene 17 gene 18 gene 19 gene 20 gene 21
gene 18 gene 19 gene 20 gene 21
gene 19 gene 20 gene 21
gene 20 gene 21
gene 21
gene 22

0 0.4 0.4

> 0 _5

5 0 0.4

-1 0 0 1 -1

0.6 0

0

Run individual Fisher's exact tests for each gene set, blue, pink, purple, green

⇒Multiple tests need pvalue adjustment.

⇒Fisher test is thresholdbased

	gene 5 gene 9		_5 _1	own-regulated
	gene 13		_1	ă
	gene 1		0	
	gene 4		0	
	gene 7		0	
	gene 10		0	Not diff. expressed
	gene 11		0	SS
	gene 15		0	Гe
	gene 16		0	d X
	gene 18	1	0	G
1	gene 21		0	ff.
	gene 22		0	di
	gene 2		0.4	ot
	gene 3		0.4	ž
	gene 8		0.4	
	gene 19		0.4	
	gene 14		0.6	
	gene 12		1	ĕ
	gene 20		1	aj
	gene 6		5	D D
	gene 17		5	o-regulate
				Up-I

Over-representation analysis using R: One possibility among many clusterProfiler

statistical analysis and visualization of functional profiles for genes and gene clusters

Built-in gene sets for human, mouse, yeast, etc Built-in GO and KEGG (see later)

[•] *G* Yu, LG Wang, Y Han, QY He. clusterProfiler: an R package for comparing biological themes among gene clusters. *OMICS: A Journal of Integrative Biology* 2012, 16(5):284-287. doi:[10.1089/omi.2011.0118](http://dx.doi.org/10.1089/omi.2011.0118)

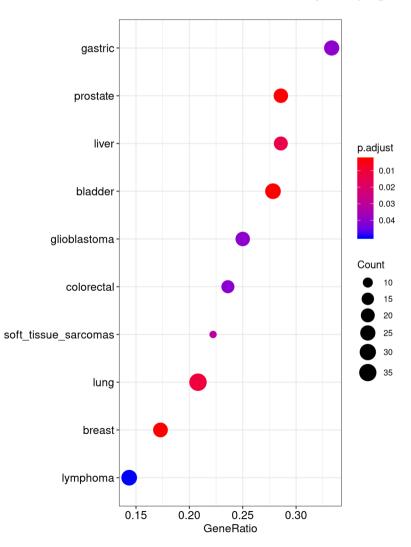
Functions for over-representation analysis

Fisher exact test (package stats)

```
fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
    hybridPars = c(expect = 5, percent = 80, Emin = 1),
    control = list(), or = 1, alternative = "two.sided",
    conf.int = TRUE, conf.level = 0.95,
    simulate.p.value = FALSE, B = 2000)
```

Over-representation analysis (similar to Fisher test) for built-in GO gene sets:

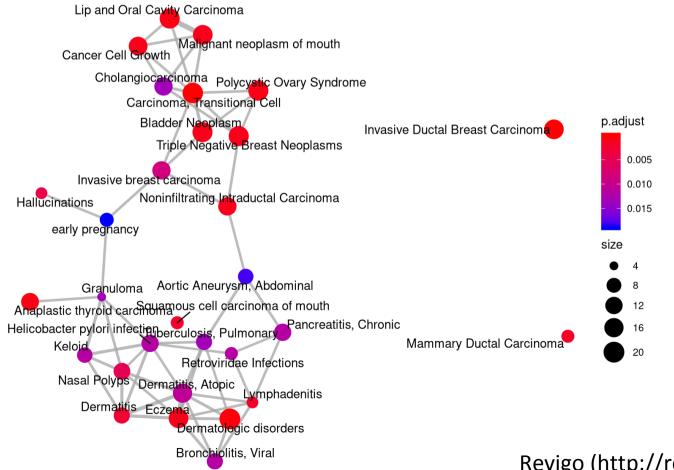
```
enrichGO(gene, OrgDb, keyType = "ENTREZID", ont = "MF",
    pvalueCutoff = 0.05, pAdjustMethod = "BH", universe,
    qvalueCutoff = 0.2, minGSSize = 10, maxGSSize = 500,
    readable = FALSE, pool = FALSE)
```


enricher(): similar enrichGO() but for user defined gene sets

```
enricher(gene, pvalueCutoff = 0.05, pAdjustMethod = "BH", universe,
minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2, TERM2GENE,
TERM2NAME = NA)
```

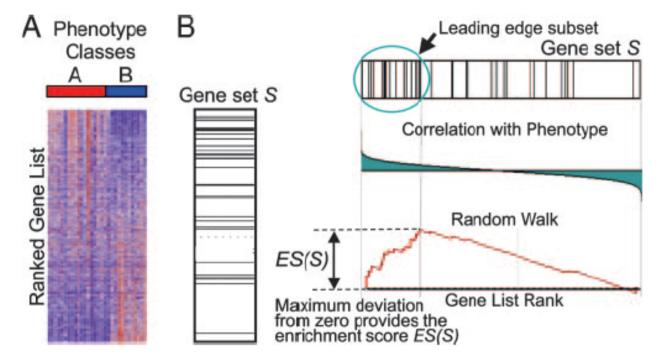
Visualizations available in clusterProfiler

• dotplot


ego <- enrichGO(de)
dotplot(ego, showCategory=10)</pre>

Visualizations available in clusterProfiler

ego <- enrichGO(de)
emapplot(pairwise_termsim(ego))</pre>


• Enrichment map

Revigo (http://revigo.irb.hr/)

Gene set enrichment analysis (GSEA)

Can be performed if you have statistics for all genes detected in the scRNAseq dataset, when using limma or edgeR

clusterProfiler:

gseGO(): GSEA of GO terms using all ranked genes gseKEGG(): GSEA of KEGG pathways using all ranked genes GSEA(): GSEA of custom gene set collection using all ranked genes

Subramanian et al 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102(43):15545-50 doi: 10.1073/pnas.0506580102

Question on enrichment analysis