

Single cell transcriptomics data analysis

Cell type annotation

What is a "cell type"?

- Fundamental unit of life
- Originally defined in terms of function, location tissue type, cell morphology
- Later extended to
 - presence/absence of cell surface markers
 - gene expression (molecular profile)
- Currently very much less fixed
 - cell cycle phase
 - migration state
 - differentiation: cell state

Wild-type *C. elegans* hermaphrodite stained to highlight the nuclei of all cells

Why should we identify cell types?

- Samples are heterogeneous (in general)
- Tumor sample: how much do they differ from normal cell types?
- Find new cell types which have been missed by using "standard" surface markers
- Follow cell fate and determine cell differentiation mechanisms
- To determine which cell types might communicate with each other
- To compare the abundance of cell types in different conditions
- • •

Change in cell type abundances: what are the new cells?

Mouse mesenteric lymphatic endothelial cells. From González-Loyola A et al 2021, DOI: 10.1126/sciadv.abf4335

Cell surface markers

- Often considered the gold standard esp. in immunology
- mRNA of cell surface markers sometimes lowly expressed or absent
- Use a combination of such marker genes, and also other genes like marker genes among clusters (eg secreted proteins or transcription factors)

Manual vs automatic cell type annotation

- Manual: using marker genes
 - What most people do...
 - Time consuming
 - Requires expert knowledge
 - Sometimes subjective and inaccurate
- Automatic: requires a reference
 - Use complete cell type-specific mRNA expression profiles based on bulk RNAseq from FACS-sorted 'pure' populations
 - OR: Use "a reference" of manually curated cells picked from scRNA-seq data sets
 - Can miss cell types if they are not included in the reference
- Methods:
 - Assign a cell type per individual cell or per cluster of cells (better per cell)
 - Assignment of cell type via correlation of each cell/cluster to the "reference"

Manual annotation using known marker genes

Human glioblastoma multiforme cells, 10x Genomics data (source of data to play with) https://support.10xgenomics.com/single-cell-gene-expression/datasets/4.0.0/Parent SC3v3 Human Glioblastoma

Databases with cell type marker genes

- PanglaoDB <u>https://panglaodb.se/</u> (mouse and human)
 Check out <u>https://cran.r-project.org/web/packages/rPanglaoDB/index.html</u>
- CellMarker (mouse and human) <u>http://bio-bigdata.hrbmu.edu.cn/CellMarker/</u>

- SingleR <u>https://github.com/dviraran/SingleR</u> (Aran et al. 2019), access via celldex package, eg human primary cell atlas (microarrays)
- Human Cell Atlas <u>https://www.humancellatlas.org</u> (Regev et al) single cell RNA seq atlas, also some mouse data
- Single cell portal: <u>https://singlecell.broadinstitute.org/single_cell</u> (source of data to play with)

Module score

Tirosh et al 2016, Science 352:6282

Compare expression level of genes belonging to the signature to "control" genes with similar expression level to signature genes

Seurat::AddModuleScore(object, features=list())

Mouse single cells. From González-Loyola A et al 2021, DOI: 10.1126/sciadv.abf4335

UCell: Robust and scalable single-cell gene signature scoring

UCell is an R package for scoring gene signatures in single-cell datasets. UCell scores, based on the Mann-Whitney U statistic, are robust to dataset size and heterogeneity, and their calculation demands relatively less computing time and memory than other robust methods, enabling the processing of large datasets (>10^5 cells). UCell can be applied to any cell vs. gene data matrix, and includes functions to directly interact with Seurat and Bioconductor's SingleCellExperiment objects.

https://github.com/carmonalab/UCell

SingleR

SingleR

Easy access to rich reference data:

- HPCA: manually-annotated Human Primary Cell Atlas
- 37 main types, 157 subtypes, 713 samples
- BluePrint +ENCODE
- 24 main types, 43 subtypes, 259 bulk RNAseq samples
- Mouse: ImmGen and 'mouse.rnaseq' (brain-specific)

Classifies cells to both main types and subtypes, performs both single cell-wise and cluster-wise annotation

SingleR

Per reference cell type, correlate to the topN genes that have median(expression) > median(expression) in all other cell types

Fine Tuning step...

SingleR – annotation diagnostics

Heatmap of scores per cell for each label:

plotScoreHeatmap(singleR.object)

plotDeltaDistribution(singleR.object)

Try them during the practical exercise

https://bioconductor.org/packages/release/bioc/vignettes/SingleR/inst/doc/SingleR.html#4_Annotation_diagnostics

SingleR can also be used to evaluate similarity to a custom reference

Arm and cl13 = 2 different strains of LCM virus

Charmoy et al 2021 <u>https://doi.org/10.1016/j.celrep.2021.109672</u>

Several methods are available

Table 1 Automatic cell identification methods included in this study

From: A comparison of automatic cell identification methods for single-cell RNA sequencing data

Name	Version	Language	Underlying classifier	Prior knowledge	Rejection option	Reference
Garnett	0.1.4	R	Generalized linear model	Yes	Yes	[14]
Moana	0.1.1	Python	SVM with linear kernel	Yes	No	[15]
DigitalCellSorter	GitHub version: e369a34	Python	Voting based on cell type markers	Yes	No	[<u>16]</u>
SCINA	1.1.0	R	Bimodal distribution fitting for marker genes	Yes	No	[<u>17]</u>
scVI	0.3.0	Python	Neural network	No	No	[18]
Cell-BLAST	0.1.2	Python	Cell-to-cell similarity	No	Yes	[19]
ACTINN	GitHub version: 563bcc1	Python	Neural network	No	No	[20]
LAmbDA	GitHub version: 3891d72	Python	Random forest	No	No	[21]
scmapcluster	1.5.1	R	Nearest median classifier	No	Yes	[22]
scmapcell	1.5.1	R	kNN	No	Yes	[<u>22]</u>
scPred	0.0.0.9000	R	SVM with radial kernel	No	Yes	[23]
СНЕТАН	0.99.5	R	Correlation to training set	No	Yes	[24]
CaSTLe	GitHub version: 258b278	R	Random forest	No	No	[25]
SingleR	0.2.2	R	Correlation to training set	No	No	[<u>26]</u>
scID	0.0.09000	R	LDA	No	Yes	[<u>27]</u>
singleCellNet	0.1.0	R	Random forest	No	No	[<u>28]</u>
LDA	0.19.2	Python	LDA	No	No	[29]
NMC	0.19.2	Python	NMC	No	No	[29]
RF	0.19.2	Python	RF (50 trees)	No	No	[29]
SVM	0.19.2	Python	SVM (linear kernel)	No	No	[29]
SVM _{rejection}	0.19.2	Python	SVM (linear kernel)	No	Yes	[<u>29]</u>
kNN	0.19.2	Python	kNN (<i>k</i> = 9)	No	No	[29]

Seurat, Azimuth (R. Satija lab)

Cell type label transfer FindTransferAnchors() scRNAseg data TransferData() 1 2 3 UMAP Dim. 2 10 UMAP Dim. 1 Predicted cell type in scATACseq data 10 N UMAP Dim. No rejection -5 -10 -5 Ō 5 10 -10 UMAP Dim. 1

https://satijalab.org/seurat/articles/integration mapping.html

Reference-based mapping

Azimuth is a web application that uses an annotated reference dataset to automate the processing, analysis, and interpretation of a new single-cell RNAseq experiment. Azimuth leverages a 'reference-based mapping' pipeline that inputs a counts matrix of gene expression in single cells, and performs normalization, visualization, cell annotation, and differential expression (biomarker discovery). All results can be explored within the app, and easily downloaded for additional downstream analysis.

The development of Azimuth is led by the New York Genome Center Mapping Component as part of the NIH Human Biomolecular Atlas Project (HuBMAP). Six molecular reference maps are currently available, with more coming soon.

https://azimuth.hubmapconsortium.org/

R vignette to run locally: https://satijalab.github.io/azimuth/articles/run_azimuth_tutorial.html

bm <- RunAzimuth(query = "x", reference = "bonemarrowref") Combine published scRNAseq datasets to create an atlas that can be used as a reference

ProjecTILs, an algorithm for reference atlas projection Andreatta et al 2021 Nat. Comm. <u>https://www.nature.com/articles/s41467-021-23324-4</u>

https://github.com/carmonalab/ProjecTILs

Additional links

<u>https://bioconductor.org/books/release/OSCA/cell-type-annotation.html#assigning-cell-labels-from-reference-data</u>

Dealing with multimodal single cell data: Argelaguet et al 2021 <u>https://www.nature.com/articles/s41587-021-00895-7</u>

Review on automated cell annotation, Pasquini et al 2021 https://www.sciencedirect.com/science/article/pii/ S2001037021000192

Question on cell type annotation