

Clustering: Cell Identity

Clustering

Clustering method are divided into two categories*:

Partitioning clustering

Hierarchical clustering

*Handbook of cluster analysis, Hennig C. et al.

Partitioning clustering

Convex partitioning. Example: K-means

Density based approaches. Example: DBSCAN

Model-based approaches. Example: Mclust

Graph based approaches : Example to follow

Graph-based

- Nodes -> cells
- Edges -> similarity ()

Graph-based: types

k-Nearest Neighbor (kNN) graph

A graph in which two vertices *p* and *q* are connected by an edge, if the distance between *p* and *q* is among the *k*-th smallest distances from *p* to other objects from *P*.

• Shared Nearest Neighbor (SNN) graph

A graph in which weights define proximity, or similarity between two nodes in terms of the number of neighbors (i.e., directly connected nodes) they have in common.

Graph-based: types

Graph-based: communities

- Communities (clusters):
 - ➢ groups of nodes with higher probability of being connected to each other than to members of other groups
- Community detection:
 - ≻find a group (community) of nodes with more edges inside the group than edges linking nodes of the group with the rest of the graph.

Graph-based: Cuts

- Graph cut partitions a graph into subgraphs
- Cut size is the number of cut edges
- Clustering by graph cuts: find the smallest cut that bi-partitions the graph
- The smallest cut is not always the best cut
- NP-hard
 - Heuristic methods applied e.g. Louvain

*Shi & Malik (IEEE PAMI 2000)

scRNA-seq clustering methods

Name	Year	Method type	Strengths	Limitations
scanpy ⁴	2018	PCA + graph-based	Very scalable	May not be accurate for small data sets
Seurat (latest) ³	2016			
PhenoGraph ³²	2015			
SC3 (REF. ²²)	2017	PCA + k-means	High accuracy through consensus, provides estimation of <i>k</i>	High complexity, not scalable
SIMLR ²⁴	2017	Data-driven dimensionality reduction + <i>k</i> -means	Concurrent training of the distance metric improves sensitivity in noisy data sets	Adjusting the distance metric to make cells fit the clusters may artificially inflate quality measures
CIDR ²⁵	2017	PCA + hierarchical	Implicitly imputes dropouts when calculating distances	
GiniClust ⁷⁵	2016	DBSCAN	Sensitive to rare cell types	Not effective for the detection of large clusters
pcaReduce ²⁷	2016	PCA + k-means + hierarchical	Provides hierarchy of solutions	Very stochastic, does not provide a stable result
Tasic et al. ²⁸	2016	PCA + hierarchical	Cross validation used to perform fuzzy clustering	High complexity, no software package available
TSCAN ⁴¹	2016	PCA + Gaussian mixture model	Combines clustering and pseudotime analysis	Assumes clusters follow multivariate normal distribution
mpath ⁴⁵	2016	Hierarchical	Combines clustering and pseudotime analysis	Uses empirically defined thresholds and a priori knowledge
BackSPIN ²⁶	2015	Biclustering (hierarchical)	Multiple rounds of feature selection improve clustering resolution	Tends to over-partition the data
RacelD ²³ , RacelD2 (REF. ¹¹⁵), RacelD3	2015	k-Means	Detects rare cell types, provides estimation of k	Performs poorly when there are no rare cell types
SINCERA ⁵	2015	Hierarchical	Method is intuitively easy to understand	Simple hierarchical clustering is used, may not be appropriate for very noisy data
SNN-Cliq ⁸⁰	2015	Graph-based	Provides estimation of k	High complexity, not scalable

scRNA-seq clustering methods

https://www.scrna-tools.org/

Seurat

- Construct SNN graph based on the Euclidean distance in PCA space.
 (Default, but could be also kNN)
- 2. Refine the edge weights between any two cells based on the shared overlap in their local neighborhoods (Jaccard index).
- Cluster cells by optimizing for modularity (cuts) (Louvain algorithm) (Modularity is a cost function, resolution is a parameter used to calculate the modularity)

obj <- FindClusters(obj)</pre>

Xu and Su (https://doi.org/10.1093/bioinformatics/btv088) Levine et al. (https://doi.org/10.1016/j.cell.2015.05.047)

Duò et al. (https://doi.org/10.12688/f1000research.15666.2)

Benchmarking

Clustering: Challenges

- What is a cell type?
- What is the number of clusters k?
- Bootstrapping
- Check QC after clustering to see if no biases are constituting your clusters
- Clustering is subjective No ground truth
- How stable are the clusters
- How dependent are the clusters on the surrounding cells

•Scalability: in the last few years the number of cells in scRNA-seq experiments has grown by several orders of magnitude from $\sim 10^2$ to $\sim 10^6$