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Developmental time

Oh 1h 2h 3h 4h 5h 6h

In the analysed data set one might encounter :

1. Cells that differentiate display a continuous spectrum of
states Transcriptional program for activation and differentiation
2. Individual cells will differentiate in an unsynchronized
manner Each cell isa snapshot of differentiation time

*OR 3. Pseudotime —abstract unit of progress

Distance between a cell and the start of the trajectory

v



Should you run trajectory
inference

« Are you sure that you have a developmental trajectory?
Do you have intermediate states?
Do you believe that you have branching in your trajectory?

Be aware, any dataset can be forced into a trajectory without
any biological meaning!

First make sure that gene set and dimensionality reduction
captures what you expect.
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Trajectory analysis

 Differences in gene expression between cells, might be attributed to dynamic
processes:

* Cell cycle
 Cell differentiation
* Response to an external stimuli
* Trajectory inference can order a set of individual cells along a path / trajectory /
lineage
 Some methods project cells onto a pseudotime axis others project each cell
along a path.

* This can be a starting point for further analysis to determine gene expression
programs driving interesting cell phenotypes.



Example of application

* From the paper Single-Cell RNA-Seq Reveals Dynamic,
Random Monoallelic Gene Expression in Mammalian Cells
(Deng et al. 2014)

* « To investigate allele-specific gene expression at single-cell
resolution, we isolated 269 individual cells dissociated from in
vivo F1 embryos (CAST/EiJ x C57BL/6J, hereafter abbreviated
as CAST and C57, respectively) from oocyte to blastocyst
stages of mouse preimplantation development (PD)»

* Here finding a trajectory between the cells might be of high
interest.



Minimum spanning tree

* Take a weighted graph.
* Take a spanning tree
* Take the minimum of all spanning trees.



Example




Minimum spanning tree
(MST)

- Sum of all distances in the tree (graph)
isat its minimum

« Having more transitional cells improves
the definition of the tree

« The weights can be a distance inthe
dimensionality reduction space (ICA, T-
SNE, UMAP, diffusion maps) or a
correlation between cells, etc.

« MST has no cycles, cell cycles will not
work in here




Slingshot (Street et al 2018)
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Slingshot (Street et al 2018)
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PC1

1. Distance between clusters
2. Infer lineages by ordering cell clusters and construct MST

3. Construct principal curves*

*Principal curves are smooth one-dimensional curves that pass through the
middle of a p-dimensional data set, providing a nonlinear summary of the
data. They are nonparametric, and their shape is suggested by the data



Monocle3 uses an algorithm
based on PAGA (python)

* PAGA constructs a k-nearest neighbour graph on cells and then identifies
‘communities’ of cells via the Louvain method.

e Two vertices (Louvain communities) are linked with an edge, when the
cells in the respective communities are neighbours in the k-nearest
neighbour graph.

* Monocle 3 constructs a k-nearest neighbour graph (k = 20) on cells in the
UMAP space, then grouping them into Louvain communities, and testing
each pair of communities for a significant number of links between their
respective cells.

* Those communities that have more links than expected under the null
hypothesis of spurious linkage (FDR <1%) remain connected in the PAGA
graph, and those links that fail this test are severed. (correction of
spurious linkage)
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Some additional tools

Spade, StemID 2, Eclair, TSCAN and Mpath use
different clustering algorithms such as k-means,
k-medoids, hierarchical clustering or DBSCAN in

a dimensionality-reduced space.

Cell Router

e Underrepresented/
rare state

Trajectory
detection
nLX E

Da Rocha et al (2018) Nat Commun



Other Post-hoc analysis

Elglng— Ramilowski et al, Nat comm, 2015- bioarxiv, https://doi.org/10.1101/833509,

CellphoneDB - https://www.cellphonedb.org/ - online « clickable » Mirjana Efremova,
Nat protocols, 2020.

NicheNet — needs apriori knowledge, Robin Browaeys, Nat met, 2020.
CellChat- http://www.cellchat.org/
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