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• Simplify complexity, so it becomes easierto  
work with.
• Reduce number of features (genes)
• In some: Transform non-linear relationships to linear

• “Remove” redundancies in thedata
• Identify the most relevant information (find and  

filter noise)
• Reduce computational time fordownstream  

procedures
• Facilitate clustering, since some algorithms  

struggle with too manydimensions
• Data visualization

Dimensionality Reduction



Dimentionality reduction: Algorithms



PCA- Principal component analysis

-PCA is based on variance
-PCA is the best angle to see and evaluate the 
data



PCA- Principal component analysis

Which and how ?



PCA- Principal component analysis



PCA- Principal component analysis

1. Largest variance first



PCA- Principal component analysis



PCA- Principal Component Analysis

2. Select uncorrelated principal axis
(orthogonal) 



PCA- Principal Component Analysis



PCA- Principal Component Analysis
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Mathematically

Calculate the eigenvectors of the Covariance matrix are the directions 
of the axes where there is the most variance (this is something you can
prove mathematically!)

eigenvalues are the coefficients attached to eigenvectors, which give
the amount of variance carried in each Principal Component.

After having the principal components, to compute the percentage of 
variance (information) accounted for by each component, we divide the 
eigenvalue of each component by the sum of eigenvalues.



https://towardsdatascience.com/a-one-stop-shop-for-principal-component-
analysis-5582fb7e0a9c



Dimentionality reduction:  
PCA doesn’t fit

• It is a LINEAR method of dimensionalityreduction

• It is an interpretable dimensionality reduction

• Data is usually SCALEDprior to PCA (Z-score | see ScaleData in the Seurat)

• The TOPprincipal components contain higher variance from the data

• Can be used as FILTERING,by selecting only the top significant PCs
• PCs that explain at least 1%of variance
• Jackstraw of significantp-values
• The first 5-10PCs
• Scater library describes correlation between PCs and metadata, take PCs until

metadata information is covered
Problems:
• The twofirst PC in SC-RNAseqoftenaccount for only few percent of the total variance
• It performs poorly to separate cells in 0-inflated data types (because of it
non-linearity nature)
• Cell sizes and sequencing depth are usually captured in the top
principal components



In R, Elbow plot

RunPCA – Computes the PCA with default : 50 pcs.
Check Elbow plot to see if 50 pcs are explaining well your data.
RunPCA will output a message with the genes contributing most to the PC (positif and 
negatif).
Uses irlba: Fast Truncated Singular Value Decomposition and Principal Components 
Analysis for Large Dense and Sparse Matrices (!!Approximation of PCA).
Usually first PCs only account for few percentages of the total variance.

obj <-RunPCA( obj )
ElbowPlot(obj,ndims=50)

Wikipedia:
https://en.wikipedia.org/wiki/Scree_plot



T-SNE



T-SNE
T-SNE = t-distributed stochastic neighborhood

embedding

Laurens van der Maaten, Geoffrey Everest Hinton

http://www.jmlr.org/papers/volume9/vandermaate
n08a/vandermaaten08a.pdf

https://www.youtube.com/watch?v=NEaUSP4YerM

Many of the following figures are inspired by this
youtube link check out his channel ! 
(StatQuestion with Josh Starmer)

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.youtube.com/watch?v=NEaUSP4YerM


Start with a data-
set



Find a right way to 
reduce dimension



Basic idea (!! set a 
seed)



Normal distribution 
around a point



We calculate
The similarity of datapoint A to datapoint B is 

the conditional probability, that A would 
pick B as its neighbor, if neighbors were 
picked in proportion to their probability 
density under a Gaussian centered at B, 
written p_A|B.

p_A|A = 0

The variance of this normal distribution 
depends on the density around C (the more 
cells closer to C the lower the variance of 
this normal distribution will be). 



Steps

1. Take a point A.

2. Take another point B

3. Plot that point on a normal 

distribution distributed around A.

4. Take another point B and plot it 

on that distribution, this will be 

called the unscaled similarity.



Steps

5. This is done for all the points. Distant 
points will have a very low similarity, 
whereas close points a very high similarity.
6.These unscaled similarities are then scaled 
so that they add up to one.
7. The similarity between A and B might be 
different than the similarity between B and 
A, so to correct for that the mean of the two 
values is taken.



Illustration



On the projection
Do the same into the randomly projected 

points.
Using a t-distribution instead of a normal 

distribution.



On the projection
Move points little by little and redo calculation 
until you are « as close as possible » to the 

original similarity matrix or you reach a certain 
number of iteration (chosen by the user).



« As close as possible »
To measure the minimization of the sum of 

difference of conditional probability t-SNE 
minimizes the sum of Kullback-Leibler
divergence of overall data points using a 
gradient descent method.

In other words : tSNE minimizes the divergence 
between two distributions: a distribution that 
measures pairwise similarities of the input 
objects and a distribution that measures 
pairwise similarities of the corresponding low-
dimensional points in the embedding



To measure the minimization of the sum of 
difference of conditional probability t-SNE 

minimizes the sum of Kullback-Leibler
divergence of overall data points using a 

gradient descent method.



Parameters for T-sne
perplexity = 30L => linked to parameter σi

momentum = 0.5, => linked to optimisation

final_momentum = 0.8, => linked to 

optimisation



A cool 
webpage:

https://distill.pub/2016/misread-tsne/

(used to generate the figures in the next slides)

https://distill.pub/2016/misread-tsne/


Getting the most from t-SNE may 
mean analyzing multiple plots with 
different perplexities.

The perplexity can be interpreted as a smooth 
measure of the effective number of neighbors



Between cluster 
distances do not matter !



Dimentionality reduction:  
UMAP

UMAP: Uniform Manifold Approximation and Projection

• It is a NON-LINEAR graph-based method of  

dimensionality reduction

• UMAP assumes that there is a manifold in the dataset, it  

could also tend to cluster noise.

• Very efficient - O(n)

• Can be run from the top PCs (e.g.: PC1 to PC10)

• Can use any distance metrics!

• Can integrate between different data types (text,  

numbers, classes)

• It is no longer completely stochastic as t-SNE

• Defines both LOCAL and GLOBAL distances

• Can be applied to newdata points

McInnes et al(2018) BioRxiv
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html



UMAP
UMAP: Uniform Manifold Approximation and Projection for 

Dimension Reduction

Leland McInnes (Mathematician), John Healy (Computing 
theorist), James Melville (Computing in R)

https://arxiv.org/abs/1802.03426

https://www.youtube.com/watch?v=nq6iPZVUxZU

https://umap.scikit-tda.org/parameters.html

https://arxiv.org/abs/1802.03426
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://umap.scikit-tda.org/parameters.html


PCA is good, but one 
can do better!

From L.McInnes, SciPy 2018
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See the 
global structure
and
Interpretable axis



T-SNE manages to see 
the local structure

From L.McInnes, SciPy 2018



T-SNE manages to 
see the local structure

From L.McInnes, SciPy 2018



Simplices

From L.McInnes, SciPy 2018



What it enables you 
to represent 

From L.McInnes, SciPy 2018

1. Combinatorial
2. Simple to implement
3. Keeps the information of
the global structure
4.Nice theorems exist on those
(Nerve theorem)



How do we build a 
simplicial complex on top 
of a data set?



Example-UMAP

From L.McInnes, SciPy 2018



Step 1: draw 
unit-balls with a 
certain metric

From L.McInnes, SciPy 2018



Step 2: Draw 
the Nerve of that 
cover

From L.McInnes, SciPy 2018



The data is not uniformly 
distributed on the 
underlying manifold

From L.McInnes, SciPy 2018



However… Data is not 
so nicely distributed

Solution: We vary the notion of metric and effectively the 
data will be with that metric uniformly distributed on the 

underlying manifold



How it looks like on the 
example

The radius of 
each ball is 

equal to one. 

From L.McInnes, SciPy 2018



How it looks like on 
the example

Equivalent to choosing 
a cover of balls with 
varying radia. This is 
what Fuzzy covers 

try to do.

There are nice 
theorems again 

justifying that all of 
this is valid.

From L.McInnes, SciPy 2018



New directed graph

From L.McInnes, SciPy 2018



But we needed a 
(weighted) simplicial 
complex…

f(a,b) = a+b - a*b

Solving the problem…



New simplicial 
complex

From L.McInnes, SciPy 2018



2nd assumption

The second assumption : the manifold is locally 
connected. 

They use that for mathematics to work but has as an 
implication that in practice you will not find isolated 

points in your dataset.



Dimension reduction

Now, UMAP is a dimension reduction 
method. Let us say you would like to 

project the data onto IR2

It will therefore take Y ={y1,…,yN}  in 
IR2

Compute the fuzzy topological 
considering IR2 to be the underlying 

manifold.



Optimizing this 
dimension reduction

Given fuzzy simplicial set representations : X and Y , a means of comparison is 
required. 

For the purpose of calculations only the 1-skeleton of the fuzzy simplicial sets is 
considered (the l-skeletons are calculated using the 1-skeleton and can 

therefore be shown to be negligible)

To compare two fuzzy sets we will make use of fuzzy set cross entropy. 



Summary

The first phase consists of constructing 
a fuzzy topological representation 

(edges and weights).
The second phase is optimizing the low 
dimensional representation to have as 

close as possible a fuzzy topological 
representation as measured by cross 

entropy.



Two shortcuts are needed 
for the computations

NNdescent: kNN approximation 
algorithm

stochastic gradient descent + negative 
sampling trick: Algorithms for 
optimizing the cross entropy.



New simplicial 
complex

From L.McInnes, SciPy 2018



How the UMAP 
embedding looks

From L.McInnes, SciPy 2018



Input parameters
X: the data

n: the neighborhood parameter: number of neighbors to consider when 
approximating the local metric

d: the target embedding dimension (2 usually)

min-dist: »beauty» parameter for the local embedding in 2D: the desired 
separation between close points in the embedding space: this determines 

how closely points can be packed together in the low dimensional 
representation

n-epochs: optimization parameter for the local embedding in 2D the number of 
training epochs (batches) to use when optimizing the low dimensional 

representation.



Some parameters in 
Seurat:

n_neighbors = 30L,
min_dist = 0.3, 

metric = "correlation", 
seed.use = 42,

n_epochs=None



Comparing tSNE and 
UMAP in terms of 
computation time



PCA is good, but one 
can do better!

From L.McInnes, SciPy 2018



T-SNE manages to see 
the local structure

From L.McInnes, SciPy 2018



UMAP

From L.McInnes, SciPy 2018
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T-SNE manages to see 
the local structure

From L.McInnes, SciPy 2018



UMAP



Paper comparing dimensionality reduction techniques:  
https://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf

obj <-RunPCA( obj )  
obj <-RunTSNE( obj )  
obj <-RunUMAP( obj )

http://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf

