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Dimensionality Reduction %

- Simplify complexity, so it becomes easierto M genes
work with. T
« Reduce number of features (genes)
« Insome: Transform non-linear relationships to linear

« "Remove” redundancies in thedata

« Identify the most relevant information (find and
filter noise)

\_

- Reduce computational time for downstream . «ux *
procedures | s @ié ::.“‘

- Facilitate clustering, since some algorithms i ;‘im‘%‘@{%- -
struggle with too manydimensions ‘t{gg’;g?jfv‘ég;fe:

- Data visualization Ay



Dimentionality reduction: Algorithms
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PCA- Principal component analysis

-PCA is based on variance
-PCA is the best angle to see and evaluate the
data



PCA- Principal component analysis

Which and how ?






PCA- Principal component analysis

1. Largest variance first



PCA- Principal component analysis




PCA- Principal Component Analysis

2. Select uncorrelated principal axis
(orthogonal)
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PCA- Principal Component Analysis







Mathematically T

Calculate the eigenvectors of the Covariance matrix are the directions
of the axes where there is the most variance (this is something you can
prove mathematically!)

eigenvalues are the coefficients attached to eigenvectors, which give
the amount of variance carried in each Principal Component.

After having the principal components, to compute the percentage of
variance (information) accounted for by each component, we divide the
eigenvalue of each component by the sum of eigenvalues.
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Principal Component
Scree Plot for Genetic Data. (Source.)

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-

analysis-5582fb7e0a9c



Dimentionality reduction: h
PCA doesn’tfit '

Itisa LINEARmMethod of dimensionality reduction

Itisan interpretable dimensionality reduction

Data is usually SCALED prior to PCA (Z-score | see ScaleData in the Seurat)

The TOP principal components contain higher variance from the data

Can be used as FILTERING, by selecting only the top significant PCs

» PCs that explain at least 1% of variance
 Jackstraw of significantp-values
* The first 5-10 PCs

« Scater library describes correlation between PCs and metadata, take PCs until
metadata information is covered

Problems:
* The two first PC in SC-RNAseq often acoount for only few percent of the total variance
« It performs poorly to separate cells in 0-inflated data types (because of it
non-linearity nature)
* Cell sizes and sequencing depth are usually captured in the top
principal components



In R, Elbow plot

RunPCA — Computes the PCA with default : 50 pcs.

Check Elbow plot to see if 50 pcs are explaining well your data.

RunPCA will output a message with the genes contributing most to the PC (positif and
negatif).

Uses irlba: Fast Truncated Singular Value Decomposition and Principal Components
Analysis for Large Dense and Sparse Matrices (!!Approximation of PCA).

Usually first PCs only account for few percentages of the total variance.

Scree Plot
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obj <-RunPCA( obj )
ElbowPlot(obj,ndims=50) S

Component Number
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https://en.wikipedia.org/wiki/Scree_plot



T-SNE



T-SNE

T-SNE = t-distributed stochastic neighborhood
embedding

Laurens van der Maaten, Geoffrey Everest Hinton

http://www.jmlr.org/papers/volume9/vandermaate

n08a/vandermaaten08a.pdf

https://www.youtube.com/watch?v=NEaUSP4YerM

Many of the following figures are inspired by this
youtube link check out his channel !
(StatQuestion with Josh Starmer)


http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.youtube.com/watch?v=NEaUSP4YerM
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Find a right way to
reduce dimension
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Normal distribution
around a point




We calculate

The similarity of datapoint A to datapoint B is
the conditional probability, that A would
pick B as its neighbor, if neighbors were
picked in proportion to their probability

density under a Gaussian centered at B,
written p_A|B.

p AIA=0

The variance of this normal distribution
depends on the density around C (the more

cells closer to C the lower the variance of
this normal distribution will be).



Steps

1. Take a point A.
2. Take another point B B
3. Plot that point on a normal

distribution distributed around A.

4. Take another point B and plot it

on that distribution, this will be 5@\
called the unscaled similarity. e_e



Steps >0\

5. This is done for all the points. Distant
points will have a very low similarity,
whereas close points a very high similarity.
6.These unscaled similarities are then scaled
so that they add up to one.

/. The similarity between A and B might be
different than the similarity between B and
A, so to correct for that the mean of the two
values is taken.






On the projection

Do the same into the randomly projected
points.
Using a t-distribution instead of a normal
distribution.




On the projection

Move points little by little and redo calculation
until you are « as close as possible » to the
original similarity matrix or you reach a certain
number of iteration (chosen by the user).
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« As close as possible »

To measure the minimization of the sum of
difference of conditional probability t-SNE
minimizes the sum of Kullback-Leibler
divergence of overall data points using a
gradient descent method.

In other words : tSNE minimizes the divergence
between two distributions: a distribution that
measures pairwise similarities of the input
objects and a distribution that measures
pairwise similarities of the corresponding low-
dimensional points in the embedding



b of it 2., 7 ¥V £
L e &

To measure the minimization of the sum of
difference of conditional probability t-SNE
minimizes the sum of Kullback-Leibler
divergence of overall data points using a
gradient descent method.

C=Y KL(P||0) =YY pilog -2,

i Jli
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Parameters for T-sne

perplexity = 30L => linked to parameter oi
momentum = 0.5, => linked to optimisation
final_momentum = 0.8, => linked to

optimisation



A cool
webpage:

https://distill.pub/2016/misread-tsne/

(used to generate the figures in the next slides)

L


https://distill.pub/2016/misread-tsne/

Getting the most from t-SNE may %j
mean analyzing multiple plots with
different perplexities.

The perplexity can be interpreted as a smooth
measure of the effective number of neighbors

Perp(P;) = 2",
where H(P;) is the Shannon entropy of P; measured in bits

H(P) = _Zpﬂi log, pji-
J
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Between cluster
distances do not matter !
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Dimentionality reduction: Yt

e
U M I \ I Embedding stability under subsampling

UMAP: Uniform Manifold Approximation and Projection . :A
 Itisa NON-LINEAR graph-based method of \
dimensionality reduction "
« UMAP assumes that there isa manifold in the dataset, it °’ "! .
could also tend to cluster noise. S, . : ! )
+ Very efficient - O(n)
« Can be run from the top PCs (e.g.: PC1 to PC10)
« Can use any distance metrics! ol >
- Can integrate between different data types (text, : % , ”‘\V
numbers, classes) m' ““; S ( e
- Itisno longer completely stochastic as t-SNE - :
» Defines both LOCAL and GLOBAL distances o e

« Can be applied to new data points

McInnes et al(2018) BioRxiv
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
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UMAP

UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction

Leland MclInnes (Mathematician), John Healy (Computing
theorist), James Melville (Computing in R)

https://arxiv.org/abs/1802.03426

https://www.youtube.com/watch?v=nq6iPZVUxZU

https://umap.scikit-tda.org/parameters.html



https://arxiv.org/abs/1802.03426
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://umap.scikit-tda.org/parameters.html

PCA is good, but one
can do better!

INSTITUT

N B (" / ANIST dioits
gy TUTTE  PCA on MNIST digits

o — N w

From L.Mclnnes, SciPy 2018




PCA is good, but one %
can do better!

INSTITUT ‘ . —
== TUTTE PCA on Fashion MNIST
. . INSTITUTE
Ankle boot
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From L.Mclnnes, SciPy 2018



T-SNE manages to see

the local structure

INSTITUT

TUTTE

INSTITUTE

t-SNE on MNIST digits
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From L.MclInnes, SciPy 2018



T-SNE manages to
see the local structure
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mpgm TUTTE t-SNE on Fashion MNIST
l .INSTITUTE

£, o r Ankle boot
&'*\{ ’-.. ;; :.é‘ ;}\ :t'
, s 3 - ol e Ty AW
3 N ‘“."‘."‘.‘ d‘ - ,,'. - Bag
s~ 0 A e ~-’3«,q«"f
y ’Q“f#}p
; v '4; Sneaker
< :‘:3;50_,-'“.-
s Shir
Sandal
Coat
Dres

Pullover
Trouser
T-shirttop

From L.Mclnnes, SciPy 2018




0-simplex

e

1-simplex

2-simplex 3-simplex

From L.MclInnes, SciPy 2018
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What it enables you
{0 represent

Simplicial
complex 1. Combinatorial
2. Simple to implement
3. Keeps the information of

the global structure

. v 4.Nice theorems exist on those
( ‘ (Nerve theorem)

From L.MclInnes, SciPy 2018



How do we build a
simplicial complex on top
of a data set?



From L.Mclnnes, SciPy 2018



Step 1: draw
unit-balls with a
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Step 2: Draw
the Nerve of that

ALRE
Ao
A

From L.Mclnnes, SciPy 2018
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The data is not uniformly
distributed on the
underlying manifold

From L.Mclnnes, SciPy 2018



However... Data Is not
so nicely distributed

Solution: We vary the notion of metric and effectively the
data will be with that metric uniformly distributed on the
underlying manifold



How it looks like on the %
example

G » o. ."
A : The radius of
3 each ball is

equal to one.

3
.4
T

%

From L.MclInnes, SciPy 2018
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How it looks like on
the example

L] | . .
h Equivalent to choosing

‘ a cover of balls with
" varying radia. This is
4 what Fuzzy covers
. try to do.
]

There are nice

° theorems again
. o justifying that all of
& Y this is valid.
e°
e

From L.MclInnes, SciPy 2018



New directed graph
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From L.MclInnes, SciPy 2018
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But we needed a
(weighted) simplicial
complex...

f(a,b) =a+b -a*b

Solving the problem...



New simplicial
complex

/\
aAva

From L.MclInnes, SciPy 2018




2Nnd assumption

The second assumption : the manifold is locally
connected.
They use that for mathematics to work but has as an
implication that in practice you will not find isolated
points in your dataset.



Dimension reduction

Now, UMAP is a dimension reduction
method. Let us say you would like to
project the data onto IR?

It will therefore take Y ={y1,...,yN} in
IR?

Compute the fuzzy topological
considering IR? to be the underlying
manifold.
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Optimizing this
dimension reduction

Given fuzzy simplicial set representations : X and Y , a means of comparison is
required.

For the purpose of calculations only the 1-skeleton of the fuzzy simplicial sets is
considered (the |-skeletons are calculated using the 1-skeleton and can

therefore be shown to be negligible)

To compare two fuzzy sets we will make use of fuzzy set cross entropy.

t(a)log /1,((1,)) — pu(a 0‘<1_'“(a)>
> u ,>1g(1/(“) 1 aytog (=




Summary

The first phase consists of constructing
a fuzzy topological representation
(edges and weights).

The second phase is optimizing the low
dimensional representation to have as
close as possible a fuzzy topological
representation as measured by cross
entropy.



Two shortcuts are needed
for the computations

NNdescent: kNN approximation
algorithm
stochastic gradient descent + negative
sampling trick: Algorithms for
optimizing the cross entropy.



New simplicial
complex
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aAva

From L.Mclnnes, SciPy 2018




How the UMAP
embedding looks

From L.Mclnnes, SciPy 2018



Input parameters

X: the data

n: the neighborhood parameter: number of neighbors to consider when
approximating the local metric

d: the target embedding dimension (2 usually)

min-dist: »beauty» parameter for the local embedding in 2D: the desired
separation between close points in the embedding space: this determines
how closely points can be packed together in the low dimensional
representation

n-epochs: optimization parameter for the local embedding in 2D the number of

training epochs (batches) to use when optimizing the low dimensional
representation.
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Some parameters Iin
Seurat:

n_neighbors = 30L,
min_dist = 0.3,
metric = "correlation”,
seed.use =42,
n_epochs=None
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Comparing tSNE and <
UMAP in terms of
computation time

COIL20 20 seconds 7 seconds
MNIST 22 minutes 98 seconds
FLLEGLINE 15 minutes 78 seconds

SN 4.5 hours 14 minutes



PCA is good, but one
can do better!
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From L.Mclnnes, SciPy 2018




T-SNE manages to see

the local structure

INSTITUT

TUTTE

INSTITUTE

t-SNE on MNIST digits
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UMAP

INSTITUT

“N= TUTTE
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From L.MclInnes, SciPy 2018



PCA is good, but one can
do better!
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T-SNE manages to see
the local structure
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UMAP

INSTITUT

mim TUTTE UMAP on Fashion MNIST
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obj <-RunPCA( obj )
obj <-RunTSNE( obj )
obj <-RunUMAP( obj )

Seurat v3 Scater Pagoda v2 Monocle v3
o) PCA PCA PCA PCA
ICA - - ICA
- MDS - -
mm) tSNE (BH, Flt) tSNE (BH) tSNE (BH) tSNE (BH)
= UMAP UMAP - UMAP
- - LargeVis -
Diff. Maps Diff. Maps Isomap -
- - - DDRTree
PHATE - - -
- - - SimplePPT

Paper comparing dimensionality reduction techniques:
https://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf



http://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf

