Trajectory analysis
Material
Exercises
Load the following packages:
library(SingleCellExperiment)
library(scater)
library(slingshot)
library(ggplot2)
library(ggbeeswarm)
Trajectory analysis using Slingshot
This part uses the
Deng
dataset
Read in data. It is an object of class SingleCellExperiment
.
deng_SCE <- readRDS("data/deng_dataset/deng-reads.rds")
Perform the first steps of the analysis. The deng_SCE object contains cells that were isolated at different stages of mouse embryogenesis, from the zygote stage to the late blastula.
The levels of the cell type are in alphabetical order. We now change the level order for plotting in developmental order:
deng_SCE$cell_type2 <- factor(deng_SCE$cell_type2,
levels = c("zy",
"early2cell",
"mid2cell",
"late2cell",
"4cell",
"8cell",
"16cell",
"earlyblast",
"midblast",
"lateblast"))
We can run a PCA directly on the object of class SingleCellExperiment
with the function runPCA
:
deng_SCE <- scater::runPCA(deng_SCE, ncomponents = 50)
Use the reducedDim
function to access the PCA and store the results.
pca <- SingleCellExperiment::reducedDim(deng_SCE, "PCA")
Describe how the PCA is stored in a matrix. Why does it have this structure?
head(pca)
Add PCA data to the deng_SCE object.
deng_SCE$PC1 <- pca[, 1]
deng_SCE$PC2 <- pca[, 2]
Plot PC biplot with cells colored by cell_type2.
colData(deng_SCE)
accesses the cell metadata DataFrame
object for deng_SCE
.
Look at Figure 1A of the paper as a comparison to your PC biplot.
ggplot(as.data.frame(colData(deng_SCE)), aes(x = PC1, y = PC2, color = cell_type2)) +
geom_point(size=2, shape=20) +
theme_classic() +
xlab("PC1") + ylab("PC2") + ggtitle("PC biplot")
PCA is a simple approach and can be good to compare to more complex algorithms designed to capture differentiation processes. As a simple measure of pseudotime we can use the coordinates of PC1. Plot PC1 vs cell_type2.
deng_SCE$pseudotime_PC1 <- rank(deng_SCE$PC1) # rank cells by their PC1 score
Create a jitter plot
ggplot(as.data.frame(colData(deng_SCE)), aes(x = pseudotime_PC1, y = cell_type2,
colour = cell_type2)) +
ggbeeswarm::geom_quasirandom(groupOnX = FALSE) +
theme_classic() +
xlab("PC1") + ylab("Timepoint") +
ggtitle("Cells ordered by first principal component")
Read the Slingshot documentation (?slingshot::slingshot
) and then run Slingshot below.
sce <- slingshot::slingshot(deng_SCE, reducedDim = 'PCA')
Exercise: Given your understanding of the algorithm and the documentation, what is one major set of parameters we omitted here when running Slingshot?
Answer
We didn’t set the parameter clusterLabels
Here is a custom function to plot the PCA based on a slingshot
object. Run it in the console to add it to your global environment:
PCAplot_slingshot <- function(sce, draw_lines = TRUE, variable = NULL, legend = FALSE, ...){
# set palette for factorial variables
palf <- colorRampPalette(RColorBrewer::brewer.pal(8, "Set2"))
# set palette for numeric variables
paln <- colorRampPalette(RColorBrewer::brewer.pal(9, "Blues"))
# extract pca from SingleCellExperiment object
pca <- SingleCellExperiment::reducedDims(sce)$PCA
if(is.null(variable)){
col <- "black"
}
if(is.character(variable)){
variable <- as.factor(variable)
}
if(is.factor(variable)){
colpal <- palf(length(levels(variable)))
colors <- colpal[variable]
}
if(is.numeric(variable)){
colpal <- paln(50)
colors <- colpal[cut(variable,breaks=50)]
}
# draw the plot
plot(pca, bg = colors, pch = 21)
# draw lines
if(draw_lines){
lines(slingshot::SlingshotDataSet(sce), lwd = 2, ... )
}
# add legend
if(legend & is.factor(variable)){
legend("bottomright", pt.bg = colpal,legend = levels(variable),pch=21)
}
}
Have a look at the PCA with the slingshot pseudotime line:
PCAplot_slingshot(sce, variable = sce$slingPseudotime_1, draw_lines = TRUE)
Also have a look at pseudotime versus cell type:
ggplot(as.data.frame(colData(deng_SCE)), aes(x = sce$slingPseudotime_1,
y = cell_type2,
colour = cell_type2)) +
ggbeeswarm::geom_quasirandom(groupOnX = FALSE) +
theme_classic() +
xlab("Slingshot pseudotime") + ylab("Timepoint") +
ggtitle("Cells ordered by Slingshot pseudotime")
This already looks pretty good. Let’s see whether we can improve it. First we generate clusters by using Seurat
:
gcdata <- Seurat::CreateSeuratObject(counts = SingleCellExperiment::counts(deng_SCE),
project = "slingshot")
gcdata <- Seurat::NormalizeData(object = gcdata,
normalization.method = "LogNormalize",
scale.factor = 10000)
gcdata <- Seurat::FindVariableFeatures(object = gcdata,
mean.function = ExpMean,
dispersion.function = LogVMR)
gcdata <- Seurat::ScaleData(object = gcdata,
do.center = T,
do.scale = F)
gcdata <- Seurat::RunPCA(object = gcdata,
pc.genes = gcdata@var.genes)
gcdata <- Seurat::FindNeighbors(gcdata,
reduction = "pca",
dims = 1:5)
# clustering with resolution of 0.6
gcdata <- Seurat::FindClusters(object = gcdata,
resolution = 0.6)
Now we can add these clusters to the slingshot
function:
deng_SCE$Seurat_clusters <- as.character(Idents(gcdata)) # go from factor to character
sce <- slingshot::slingshot(deng_SCE,
clusterLabels = 'Seurat_clusters',
reducedDim = 'PCA',
start.clus = "2")
Check how the slingshot object has evolved
SlingshotDataSet(sce)
Plot PC1 versus PC2 colored by slingshot pseudotime:
PCAplot_slingshot(sce, variable = sce$slingPseudotime_2)
Plot Slingshot pseudotime vs cell stage.
ggplot(data.frame(cell_type2 = deng_SCE$cell_type2,
slingPseudotime_1 = sce$slingPseudotime_1),
aes(x = slingPseudotime_1, y = cell_type2,
colour = cell_type2)) +
ggbeeswarm::geom_quasirandom(groupOnX = FALSE) +
theme_classic() +
xlab("Slingshot pseudotime") + ylab("Timepoint") +
ggtitle("Cells ordered by Slingshot pseudotime")
ggplot(data.frame(cell_type2 = deng_SCE$cell_type2,
slingPseudotime_2 = sce$slingPseudotime_2),
aes(x = slingPseudotime_2, y = cell_type2,
colour = cell_type2)) +
ggbeeswarm::geom_quasirandom(groupOnX = FALSE) +
theme_classic() +
xlab("Slingshot pseudotime") + ylab("Timepoint") +
ggtitle("Cells ordered by Slingshot pseudotime")
Particularly the later stages, separation seems to improve. Since we have included the Seurat clustering, we can plot the PCA, with colors according to these clusters:
PCAplot_slingshot(sce,
variable = deng_SCE$Seurat_clusters,
type = 'lineages',
col = 'black',
legend = TRUE)
PCAplot_slingshot(sce,
variable = deng_SCE$cell_type2,
type = 'lineages',
col = 'black',
legend = TRUE)
Exercise: Instead of providing an initial cluster, think of an end cluster that would fit this trajectory analysis and perform the slingshot analysis. Does slingshot find the initial cluster corresponding to the biological correct situation?
Answer
sce <- slingshot::slingshot(deng_SCE,
clusterLabels = 'Seurat_clusters',
reducedDim = 'PCA',
end.clus = c("0", "3", "5")) ## check which would be the best according to bio
Clear your environment:
rm(list = ls())
gc()
.rs.restartR()
Trajectory analysis with monocle3
This part uses the
gbm
dataset
This part showcases how you can use monocle3
to perform a trajectory analysis. First load the gbm
dataset:
gbm <- readRDS("gbm_day3.rds")
Load the required package into your environment:
library(monocle3)
Generate a monocle3
object (with class cell_data_set
) from our Seurat
object:
feature_names <- as.data.frame(rownames(gbm))
rownames(feature_names) <- rownames(gbm)
colnames(feature_names) <- "gene_short_name"
gbm_monocl <- monocle3::new_cell_data_set(gbm@assays$RNA@counts,
cell_metadata = gbm@meta.data,
gene_metadata = feature_names)
We pre-process the newly created object. What does it involve? Check:
?preprocess_cds
Preprocess the dataset:
gbm_monocl <- monocle3::preprocess_cds(gbm_monocl)
And check out the elbow plot:
monocle3::plot_pc_variance_explained(gbm_monocl)
Perform UMAP using the implementation in the monocle3
package and its default parameters:
gbm_monocl <- monocle3::reduce_dimension(gbm_monocl, reduction_method = "UMAP")
Plot the monocle3
UMAP coloring cells according to the cluster ID ran with Seurat
:
monocle3::plot_cells(gbm_monocl, color_cells_by = "RNA_snn_res.0.2")
monocle3::plot_cells(gbm_monocl, genes = "PMP2") # to plot expression level of a gene
Cluster cells using monocle3
‘s clustering function:
gbm_monocl <- monocle3::cluster_cells(gbm_monocl, resolution=0.00025)
p1 <- monocle3::plot_cells(gbm_monocl, label_cell_groups = F)
p2 <- monocle3::plot_cells(gbm_monocl, color_cells_by = "RNA_snn_res.0.2", label_cell_groups = F)
cowplot::plot_grid(p1, p2, ncol = 2) # Are there differences?
learn graph (i.e. identify trajectory) using monocle3
UMAP and clustering:
gbm_monocl <- monocle3::learn_graph(gbm_monocl)
monocle3::plot_cells(gbm_monocl)
monocle3::plot_cells(gbm_monocl, color_cells_by = "RNA_snn_res.0.2")
Replace monocle3
cluster id by Seurat
cluster id if we want to keep the same information:
gbm_monocl@clusters$UMAP$clusters <- colData(gbm_monocl)$RNA_snn_res.0.2
names(gbm_monocl@clusters$UMAP$clusters) <- rownames(colData(gbm_monocl))
gbm_monocl <- monocle3::learn_graph(gbm_monocl)
monocle3::plot_cells(gbm_monocl, label_cell_groups = F)
Select the “initial” cells to calculate pseudotime. A pop up window will open and you need to click on the “initial” cells (one node per trajectory), then click “Done”.
gbm_monocl<-monocle3::order_cells(gbm_monocl)#
monocle3::plot_cells(gbm_monocl,
color_cells_by = "pseudotime",
label_cell_groups=F,
label_leaves=F,
label_branch_points=FALSE,
graph_label_size=1.5, cell_size = 1)
Plot a gene’s expression vs pseudotime
plot_genes_in_pseudotime(subset(gbm_monocl, rowData(gbm_monocl)$gene_short_name=="PMP2"))