

Profiling and modeling the colorectal cancer microbiome

Alessio Milanese, Lukas Malfertheiner

Project 3

Spring School Bioinformatics and computational approaches in Microbiology

Part 1: Quality Filtering and Trimming

Fastq Files

@read98
CATCGACGACCTGGACGACCTGGACTTCATCGAGCGGGTGAAGATCCAGCAGAAGAACTGGATCGGCCGCTCCACCGGTGCCGAGGTCACCTTCAAGGCC
+
BBBFFFFFFFFFBBFFFFIIFFFIIIIIIIIIFBFIIFFFFFF
@read169
GCGGTGGTTCGGATCTGATGTTCCCGCACCATGAATATCAAAATGGTTGCCCAACTGTTTGCAGTTCATCGCCGAACATTCGATGTGCC
+
BBBFB <f7b<bfbfffbbfbff<ffffffffffffffff< th=""></f7b<bfbfffbbfbff<ffffffffffffffff<>
@read221
GCCAATGGCACTGCCCGGTAGCTAAATGCGGAAGAGAGAAGAGTGCTGAAAGCATCTAAGCACGAAACTTGCCCCGAGATGAGTTCTCCCTGACTCCTTGAG
+
BBBFFFFFFFFFFFIIIFIBFFFIIIIIFIFFFFIIIIFFFFFF
@read295
ATCATTCACAATGGGGGGAAACCCTGATGGTGCGACGCCGCGTGGGGGAATGAAGGTCTTCGGATTGTAAACCCCTGTCATGTGGGAGCAAATTAAAANNN
+
BBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
@read601
CCCACAAGCAGCGCGCCCCACGAGCCCCGGTCCATAGGTAACCGCCACCGCCGTCATATCCTCTAGAGACATATCCGCTTCCTTTAACGCTTCCTCGATCA
+
BBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
@read643
CTCATGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCATGCTGATCTGCGATTACTAGCAATTCCGACTTCATACAGGCGAGTT
+
BBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Character:	!"#\$%&'	()*+,,	/0123456789:	;<=>?@ABC	DEFGHI
	1	1	1		1
Quality score:	0	10	20		40

Phred Score

Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%

Fastqc

• Program to asses quality of sequences with a convenient web interface

Genome analysis

Advance Access publication April 1, 2014

Trimmomatic: a flexible trimmer for Illumina sequence data

Anthony M. Bolger^{1,2}, Marc Lohse¹ and Bjoern Usadel^{2,3,*}

¹Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,²Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and ³Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany

Associate Editor: Inanc Birol

- Use quality information obtained by fastqc in order to trim our fastq files
- Important to not get missleading results!

Taxonomic profiling – what is it?

Taxonomic Profiling:

Estimate relative cell counts in a microbiome sample from metagenomic sequencing

Taxonomic profiling – how it is done?

Taxonomic profiling approaches – whole-genome mapping

Environmental sample Shotgun sequencing DNA extraction bias sequencing biases sampling noise

Taxonomic profiling approaches – whole-genome mapping

Environmental sa	ample		

Environmental sar	mple		

Environmental sample	
Shotgun sequencing	
True taxonomic annotation	
Estimated by whole-genome mapping	- genome size issue
Estimated by universal marker	

Taxonomic profiling – mapping reads to genomes

Environmental sample

Environmental sample

Environmental sample

Environmental sample

- ignore the reads

Environmental sample

> Bioinformatics. 2017 Dec 1;33(23):3808-3810. doi: 10.1093/bioinformatics/btx517.

MAPseq: highly efficient k-mer search with confidence estimates, for rRNA sequence analysis

João F Matias Rodrigues ¹, Thomas S B Schmidt ¹, Janko Tackmann ¹, Christian von Mering ¹

Affiliations + expand PMID: 28961926 PMCID: PMC5860325 DOI: 10.1093/bioinformatics/btx517 Free PMC article

Article Open Access Published: 04 March 2019

Microbial abundance, activity and population genomic profiling with mOTUs2

Alessio Milanese, Daniel R Mende, Lucas Paoli, Guillem Salazar, Hans-Joachim Ruscheweyh, Miguelangel Cuenca, Pascal Hingamp, Renato Alves, Paul I Costea, Luis Pedro Coelho, Thomas S. B. Schmidt, Alexandre Almeida, Alex L Mitchell, Robert D. Finn, Jaime Huerta-Cepas, Peer Bork, Georg Zeller 🖾 & Shinichi Sunagawa 🖂

 Nature Communications
 10, Article number: 1014 (2019)
 Cite this article

 25k
 Accesses
 107
 Citations
 78
 Altmetric
 Metrics

Strengths and weaknesses of different approaches

Lower resolution

The mOTUs framework – DB construction

[Ciccarelli et al. *Science* 2006] [Sunagawa et al. *Nat. Methods* 2013] [Milanese et al. *Nat. Commun.* 2019]

Incorporation of MAGs into the mOTUs3 database

MAG-derived mOTUs are called ext_mOTUs

Improvement of scope in mOTUs since first version

[Sunagawa et al., *Nat. Methods* 2013]
 [Mende et al. *Nat. Methods* 2013]

3. [Milanese et al., *Nat. Commun.* 2019] **4.** [Mende et al., Nucleic Acids Res. 2017]

5. [Mende et al., Nucleic Acids Res. 2020]

6. [Ruscheweyh, Milanese et al. bioRxiv 2021]

mOTUs3 – database extension by marker genes from metagenomeassembled genomes (>500,000 MAGs)

Enables profiling an unprecedented diversity of prokaryotes (33,570 species) across many environments.

motu-tool.org

High-accuracy profiling as evaluated by an independent benchmark - CAMI

[[]Meyer et al., Accepted in Nature Methods, 2022]

MAPseq

MAP SSU reference

microbeatlas.org

compare your metagenomic data to a global reference set of a million microbiome samples

Search for any microbial taxa by sequence or name

Benchmark of accuracy on known taxonomy

Taxonomic profiling – why it is important?

Taxonomic analysis is fundamental to the analysis of microbial communities

Describing the microbial community under study

Correlating environm. or host features to microbes

[Zeller et al., MSB, 2014]

Comparing different microbial communities

Comparing findings to literature

Profiling multiple samples

		~ © `	Ŷ,	റ്റ	D .	<u>د</u> ن دن	o v	Λ	6	0
	Sall	Sall	Sall	Salling Salling	Call	Sauly	Sarrig	Sall	Saul	Sally
B. vulgatus	15	0	9	6	9	21	3	0	45	6
P. copri	7	11	0	0	12	0	6	0	0	0
E. rectale	4	4	0	4	0	7	0	0	0	13
B. wexlerae	10	0	2	0	0	5	0	0	4	7
A. putredinis	1	0	0	0	0	3	0	0	0	1
E. coli	0	3	12	0	0	5	0	4	1	0
C. innocuum	0	2	0	0	0	1	2	8	0	6
R. intestinalis	12	0	0	6	4	0	5	2	0	0
A. finegoldii	6	1	1	0	0	0	2	0	0	23

Profiling multiple samples – Library size

		N I	Ŷ.	ი დ ,	Ø,	<u>د</u> رې درې		۸ ۲	<i>с</i> р 20 ус	0 20 50
	Sall	S. Sal	S. Sall	Sally Sally	Sall	Sally Sally	Sauly	Sally	s carlo	Garil
B. vulgatus	4	6	12	2	4	0	2	3	0	9
P. copri	6	2	4	1	4	8	6	1	5	0
E. rectale	3	0	0	8	1	2	0	0	3	3
B. wexlerae	0	3	6	0	8	4	4	3	4	0
A. putredinis	0	0	0	6	0	14	1	0	0	7
E. coli	0	0	0	0	0	12	6	8	21	4
C. innocuum	0	1	2	0	4	2	1	1	0	5
R. intestinalis	5	1	2	0	2	3	9	0	2	0
A. finegoldii	0	0	0	1	0	0	0	0	0	0

Profiling multiple samples – Library size

	ç	No contraction of the second s	چ	\$ \$		\$ \$	8		<i>в</i> 8	0
	Sall	Sall	x call	Sall	Saut	Sauch	Sally	Sault	Sall	Sally
B. vulgatus	4	6	12	2	4	0	2	3	0	9
P. copri	6	2	4	1	4	8	6	1	5	0
E. rectale	3	0	0	8	1	2	0	0	3	3
B. wexlerae	0	3	6	0	8	4	4	3	4	0
A. putredinis	0	0	0	6	0	14	1	0	0	7
E. coli	0	0	0	0	0	12	6	8	21	4
C. innocuum	0	1	2	0	4	2	1	1	0	5
R. intestinalis	5	1	2	0	2	3	9	0	2	0
A. finegoldii	0	0	0	1	0	0	0	0	0	0

SUM 18 13 26 18 23 45 29 16 35 28

Profiling multiple samples – Library size

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ ?	Ø 3			∧ 3 ≤	8 2 %	
	Sall	Sall	x con	Sall	Sall	Sall	Sall	Sally	South	Salle
B. vulgatus	4	6	12	2	4	0	2	3	0	9
P. copri	6	2	4	1	4	8	6	1	5	0
E. rectale	3	0	0	8	1	2	0	0	3	3
B. wexlerae	0	3	6	0	8	4	4	3	4	0
A. putredinis	0	0	0	6	0	14	1	0	0	7
E. coli	0	0	0	0	0	12	6	8	21	4
C. innocuum	0	1	2	0	4	2	1	1	0	5
R. intestinalis	5	1	2	0	2	3	9	0	2	0
A. finegoldii	0	0	0	1	0	0	0	0	0	0

SUM 18 13 26 18 23 45 29 16 35 28

#### Profiling multiple samples – Relative abundance

		~ ~	»~ ;	<i>с</i> у С	× ©		6		8	
	Sal	Sal	x Sall	Sall	Sal	Salle	Sall	Sali	Salla	Sallin
B. vulgatus	0.2	0.5	0.5	0.1	0.2	0	0.1	0.2	0	0.3
P. copri	0.3	0.2	0.2	0.1	0.2	0.2	0.2	0.1	0.1	0
E. rectale	0.2	0	0	0.4	0	0	0	0	0.1	0.1
B. wexlerae	0	0.2	0.2	0	0.3	0.1	0.1	0.2	0.1	0
A. putredinis	0	0	0	0.3	0	0.3	0	0	0	0.3
E. coli	0	0	0	0	0	0.3	0.2	0.5	0.6	0.1
C. innocuum	0	0.1	0.1	0	0.2	0	0	0.1	0	0.2
R. intestinalis	0.3	0.1	0.1	0	0.1	0.1	0.3	0	0.1	0
A. finegoldii	0	0	0	0.1	0	0	0	0	0	0

# Profiling multiple samples – Richness

	4	N° .	No i	<i>с</i> С	к К К К К К К К К К К К К К К К К К К К		s S S S S S S S S S S S S S S S S S S S		8	0
	Sal	* Sal	K Gall	Sol	Sall	Sall	Sall	Sall	Sall	Sall
B. vulgatus	0.2	0.5	0.5	0.1	0.2	0	0.1	0.2	0	0.3
P. copri	0.3	0.2	0.2	0.1	0.2	0.2	0.2	0.1	0.1	0
E. rectale	0.2	0	0	0.4	0	0	0	0	0.1	0.1
B. wexlerae	0	0.2	0.2	0	0.3	0.1	0.1	0.2	0.1	0
A. putredinis	0	0	0	0.3	0	0.3	0	0	0	0.3
E. coli	0	0	0	0	0	0.3	0.2	0.5	0.6	0.1
C. innocuum	0	0.1	0.1	0	0.2	0	0	0.1	0	0.2
R. intestinalis	0.3	0.1	0.1	0	0.1	0.1	0.3	0	0.1	0
A. finegoldii	0	0	0	0.1	0	0	0	0	0	0
	Ļ					Ļ				
	4					5				

- The richness is calculated per sample
- It represents the total number of species observed in a sample

### Profiling multiple samples – Prevalence

	4	× ×	Å.	ۍ سې		\$) \$)	S S S S S S S S S S S S S S S S S S S	へ &  >	\$ \$	0	~ v
	Sal	K Sal	x call	s con	Sall	Sall	Saul	Sall	Sall	Sault	
B. vulgatus	0.2	0.5	0.5	0.1	0.2	0	0.1	0.2	0	0.3	→ 8
P. copri	0.3	0.2	0.2	0.1	0.2	0.2	0.2	0.1	0.1	0	
E. rectale	0.2	0	0	0.4	0	0	0	0	0.1	0.1	(
B. wexlerae	0	0.2	0.2	0	0.3	0.1	0.1	0.2	0.1	0	- 1
A. putredinis	0	0	0	0.3	0	0.3	0	0	0	0.3	i
E. coli	0	0	0	0	0	0.3	0.2	0.5	0.6	0.1	
C. innocuum	0	0.1	0.1	0	0.2	0	0	0.1	0	0.2	
R. intestinalis	0.3	0.1	0.1	0	0.1	0.1	0.3	0	0.1	0	
A. finegoldii	0	0	0	0.1	0	0	0	0	0	0	<b>→</b> 1

The prevalence is calculated per species

 It measure the number of sample where the species is detected

## Profiling multiple samples – Prevalence

	4	No 1	× ;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× ×	\$ \$	s S S		8	0	20 20
	Sal	* Sal	x call	s con	Sall	Sall	Saut	Sall	Sault	Sault	
B. vulgatus	0.2	0.5	0.5	0.1	0.2	0	0.1	0.2	0	0.3	
P. copri	0.3	0.2	0.2	0.1	0.2	0.2	0.2	0.1	0.1	0	
E. rectale	0.2	0	0	0.4	0	0	0	0	0.1	0.1	
B. wexlerae	0	0.2	0.2	0	0.3	0.1	0.1	0.2	0.1	0	
A. putredinis	0	0	0	0.3	0	0.3	0	0	0	0.3	
E. coli	0	0	0	0	0	0.3	0.2	0.5	0.6	0.1	
C. innocuum	0	0.1	0.1	0	0.2	0	0	0.1	0	0.2	
R. intestinalis	0.3	0.1	0.1	0	0.1	0.1	0.3	0	0.1	0	
A. finegoldii	0	0	0	0.1	0	0	0	0	0	0	

→ 8 (0.8)

- The prevalence is calculated per species
- It measure the number of sample where the species is detected
- It can also be represented as fraction of the total amount of samples

→ 1 (0.1)