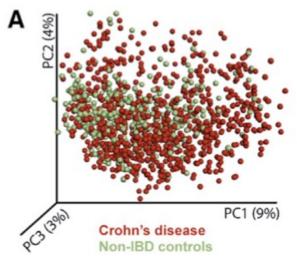


Univariate statistical tests for metagenomic data

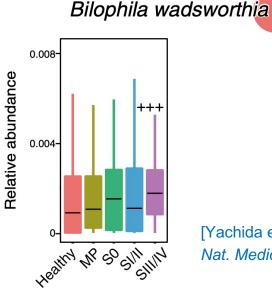
Project 3

Spring School Bioinformatics and computational approaches in Microbiology Alessio Milanese, Lukas Malfertheiner


Comparing microbiome composition in case-control studies

Tools for microbial community comparison

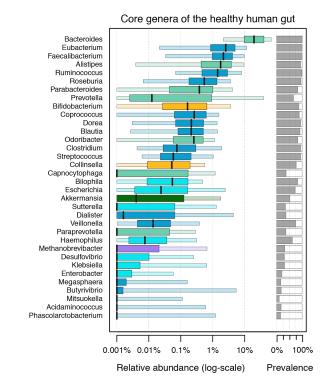
Assessing difference in overall community structure


- Clustering
- Ordination

[Gevers et al. Cell Host&Microbe 2014]

Testing for changes in individual taxa

Statistical testing

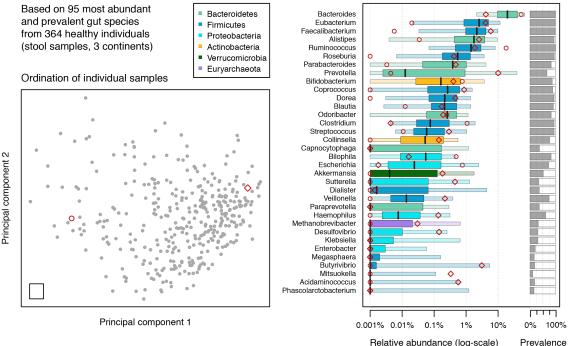


[Yachida et al. Nat. Medicine 2019]

Which statistical test is appropriate?

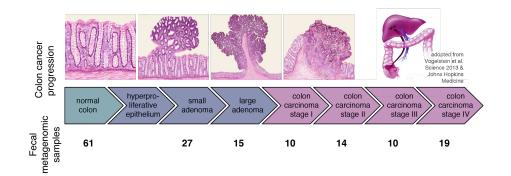
Some things to keep in mind:

- Microbiome data show zeroinflation
- Microbiome data do not follow a log-normal distribution
- Extreme variance across individuals



4

Which statistical test is appropriate?


Some things to keep in mind:

- Microbiome data show zeroinflation
- Microbiome data do not follow a log-normal distribution
- Extreme variance across individuals

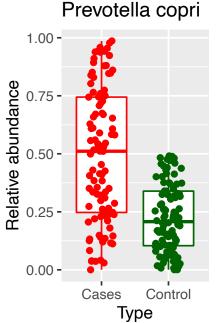
Core genera of the healthy human gut

Colorectal cancer (CRC) as an introductory example

- Collected stool samples from 46 colorectal cancer (CRC) patients and 60 healthy controls
- Used metagenomic sequencing and profiled gut bacterial species
- Can microbiome differences be used for non-invasive detection of cancer?

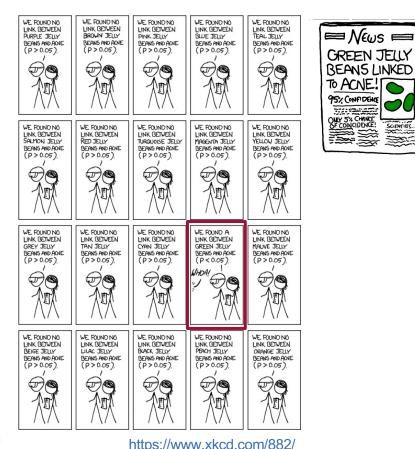
[Zeller*, Tap*, Voigt* et al., Mol. Syst. Biol. 2014]

Statistically significant associations with CRC

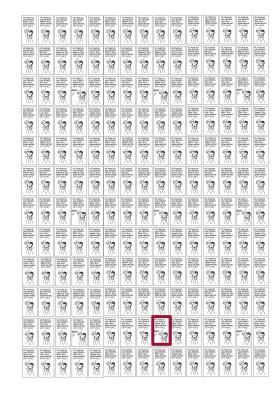

How would you identify which species are associated to CRC?

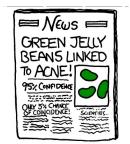
		»	»	° No	×		ø 、	۸ و 、	e S	0
	Sal	S Sal	De Carrie	De Call	e carrie	es carrie	oo carrie	en contra	e carrie	o cano
B. vulgatus	0.2	0.5	0.5	0.1	0.2	0	0.1	0.2	0	0.3
P. copri	0.3	0.2	0.2	0.1	0.2	0.2	0.2	0.1	0.1	0
E. rectale	0.2	0	0	0.4	0	0	0	0	0.1	0.1
B. wexlerae	0	0.2	0.2	0	0.3	0.1	0.1	0.2	0.1	0
A. putredinis	0	0	0	0.3	0	0.3	0	0	0	0.3
E. coli	0	0	0	0	0	0.3	0.2	0.5	0.6	0.1
C. innocuum	0	0.1	0.1	0	0.2	0	0	0.1	0	0.2
R. intestinalis	0.3	0.1	0.1	0	0.1	0.1	0.3	0	0.1	0
A. finegoldii	0	0	0	0.1	0	0	0	0	0	0

Statistically significant associations with CRC


How would you identify which species are associated to CRC?

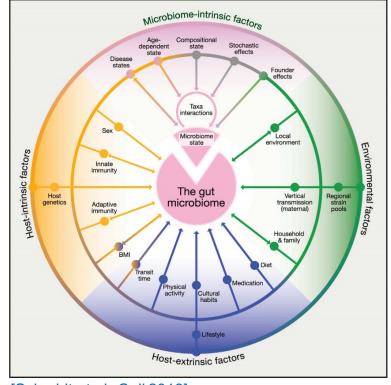
		~	No contraction of the second s	ი დ .	×.		Ś	۸ ٥、	<i>в</i> ,	0
	Sal	No con	Sall	Ne San	Ne Carrie	Solution Contraction	e carrie	en contra	e carti	o cand
B. vulgatus	0.2	0.5	0.5	0.1	0.2	0	0.1	0.2	0	0.3
P. copri	0.3	0.2	0.2	0.1	0.2	0.2	0.2	0.1	0.1	0
E. rectale	0.2	0	0	0.4	0	0	0	0	0.1	0.1
B. wexlerae	0	0.2	0.2	0	0.3	0.1	0.1	0.2	0.1	0
A. putredinis	0	0	0	0.3	0	0.3	0	0	0	0.3
E. coli	0	0	0	0	0	0.3	0.2	0.5	0.6	0.1
C. innocuum	0	0.1	0.1	0	0.2	0	0	0.1	0	0.2
R. intestinalis	0.3	0.1	0.1	0	0.1	0.1	0.3	0	0.1	0
A. finegoldii	0	0	0	0.1	0	0	0	0	0	0


Multiple testing correction


SCIENTISS

- Since we test several hundreds of taxa. some tests will be "significant" by chance
- It is thus crucial to perform a multiple testing correction, e.g.
 - The Benjamini-Hochberg procedure controls • the false discovery rate (proportion of true positives among those for which the null hypothesis is rejected)
 - The Bonferroni procedure controls • the family-wise error rate (probability of the significant set to contain any false positive)

Multiple testing correction



- Since we test several hundreds of taxa, some tests will be "significant" by chance
- It is thus crucial to perform a multiple testing correction, e.g.
 - The Benjamini-Hochberg procedure controls the false discovery rate (proportion of true positives among those for which the null hypothesis is rejected)
 - The Bonferroni procedure controls the family-wise error rate (probability of the significant set to contain any false positive)

Technical and biological effects on community composition can be challenging to deconvolute

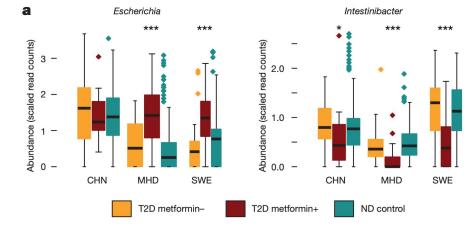
- Technical factors can strongly affect microbial community profiles (batch effects), e.g. DNA extraction protocols, sequencing approach (16S primers), bioinformatic profiling
- Biological factors other than that of interest can affect profiles (confounders), e.g. medication, lifestyle, host demographics

[Schmidt et al. Cell 2018]

Caveat: confounding (here due to metformin)

- Two studies reported associations between the gut microbiome and type 2 diabetes
 - However, there was little overlap in the set of associated taxa
- Metformin is a common medication for treatment of type 2 diabetes
- Metformin alters the composition of the gut microbiome

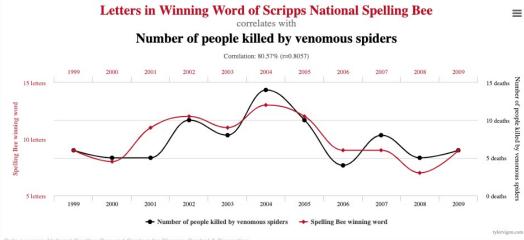
A metagenome-wide association study of gut microbiota in type 2 diabetes



Gut metagenome in European women with normal, impaired and diabetic glucose control

doi:10.1038/nature12198

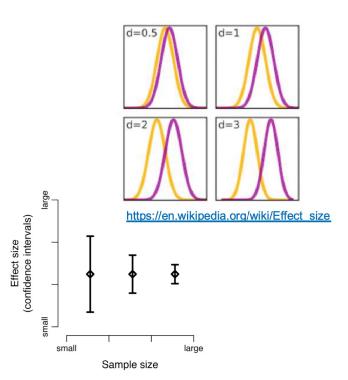
Fredrik H. Karksson¹*, Valentina Tremaroli²*, Intawat Nookaew³, Göran Bergström², Carl Johan Behre², Björn Fagerberg², Jens Nielsen¹ & Fredrik Bäckhed^{2,3}


Type 2 dialects (T2D) is a result of complex gene-environment, decreases in the abundance of the Clastifian peecks in the T2D group interaction, and several risk factors have been identified, indical, (diastated > CoSM Koon mark sum test Signementar Fig. Is and gas gas, family history, dist, sedentary lifestyle and obesity. Supplementary Tipk and chost a statistical models that combine known risk factors for T2D can statistical models that combine known risk factors for T2D can alled quotively with histing glavos and HLA: (glavoptiel) and partyl identify individuals at high risk of developing the disease. moglobin, a long-term measure of blocd glavos control (adjusted However, these studies have so far indicated that human genetics. > 20:50, Suparam controlino). The outries, disadest models and the see far indicated that human genetics.

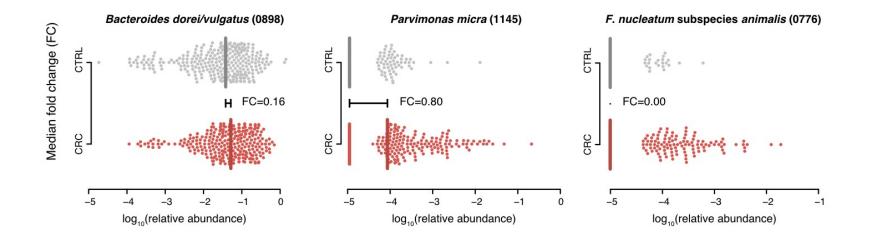
doi:10.1038/eature11450

[Forslund et al. Nature 2015]

Caveat: association does not imply causation

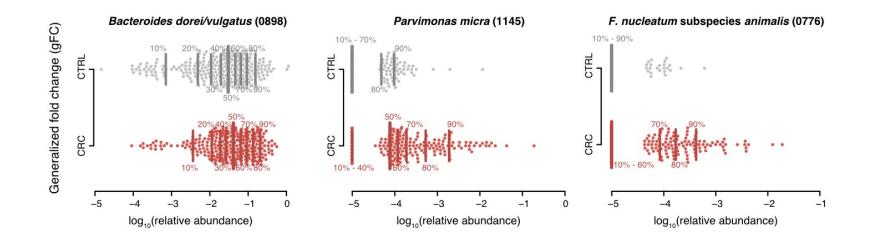


Data sources: National Spelling Bee and Centers for Disease Control & Prevention

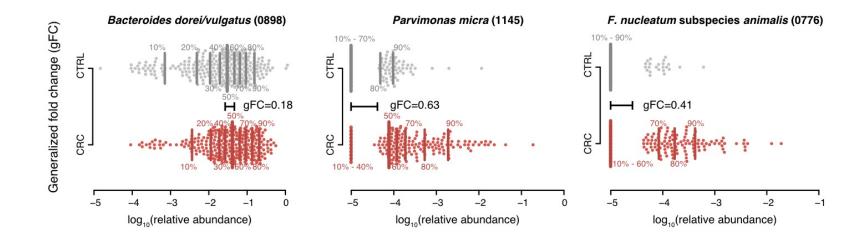

LETT	ER #01.10.1038/hatuve2501	9
	eyond microbiome-wide associations to crobe identification	
Neeraj K. Surana ^{1,2} & D	*	
	clation studies have established that disease. We found that—similar to germ-free mice—MMb mice were socialed with changes in the microbiots ¹³ consistence exositive to destran sodium wilfare (PSS) isolared collities Leading Edge Perspective	
	Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents	
	Jens Walter, ^{1,23,44} Anissa M. Armet, ^{1,4} B. Brett Finlay, ^{14,5} and Fergus Shanahan ² ¹ Opapartment d Apricultural, Food & Natritional Societo, University of Mohra, Echnoten, AB 106 2E1, Canada ² Department of Bedopaid Societors, University of Abrin, Echnoten, AB 108 2E1, Canada ² School of Microbiology, University Olapio Cenc, Coch 12 V120, Jean ³ School of Microbiology, University Olapio Cenc, Coch 12 V120, Jean ⁴ Micrate Simil, Buotention, Liversity Of Bethic Clambia, Vancouver, BC W1 123, Canada ¹ Opapartment of Microbiology, Ilimitry VI Bethic Clambia, Vancouver, BC W1 123, Canada ¹ Opapartment d Microbiology, Ilimitry VI Bethic Clambia, Vancouver, BC W1 123, Canada ¹ Opapartment of Buotenistity and Miclear Biology, University of British Columbia, Vancouver, BC W1 123, Canada ¹ Opapartment of Buotenistity and Miclear Biology, University of British Columbia, Vancouver, BC W1 123, Canada ¹ Opapartment (1911) ¹ Miclear Biology, University of British Columbia, Vancouver, BC W1 123, Canada ¹ Opapartment (1911) ¹ Miclear Biology (1918) ¹ Clambia ¹ Miclear Biology (1918) ¹ Clambia ¹ Distance ¹ D	

Caveat: significance not to be confused with effect size

- Statistical significance does not mean that the difference is big, important or biologically significant.
 It simply means you can be confident that there is a difference.
- Any (even a tiny) difference can create a significant results if the sample size is large enough
- What is a good effect size measure for microbiome data?



Generalized fold change as measure for effect size


[Wirbel et al., Genome biology 2021]

Generalized fold change as measure for effect size

[Wirbel et al., Genome biology 2021]

Generalized fold change as measure for effect size

[Wirbel et al., Genome biology 2021]

Exercises

- Download the provided dataset with healthy and CRC samples profiled with mOTUs
- Try to identify which mOTUs are enriched or depleted in colorectal cancer patients
- Use SIAMCAT association testing on the samples you downloaded