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Colorectal cancer example (continued)
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Collected stool samples from 46

colorectal cancer (CRC) patients
and 60 healthy controls

Used metagenomic sequencing and
profiled gut bacterial species

Can microbiome differences be used
for non-invasive detection of cancer?

How does metagenomic detection
compare to standard noninvasive
diagnostic test (FOBT)?

[Zeller*, Tap*, Voigt* et al., Mol. Syst. Biol. 2014]



A microbiome “signature” of colorecatal cancer
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Metagenomic test score
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[Zeller*, Tap*, Voigt* et al.,
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Descriptive statistics versus statistical modeling

- Hypothesis testing:

Could the observed difference

also be observed by chance? P 1'76_:4 P =266
<+ - - <+ -
- Modeling: z i . - |
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Why statistical modelling / machine learning?

- Modeling ideally extracts the essence of a biological phenomenon

* Model needed to make predictions on new data
(necessary e.g. for microbiome-based diagnostics)

* Prediction accuracy is often a more meaningful measure of
association than statistical significance of differences

- Suitable methods can select predictive taxa (and ignore others)

- Sparse statistical models are based on only ,few" taxa,
therefore useful for microbiome biomarker / signature extraction

For i samples / patients
. — f (X . ) _|_ 5 y; — label (e.g. disease or control), always binary herein
yZ (2 x; — features (e.g. species abundance profile, a vector)
f —our model
€ — modeling error
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Introduction to notation and input data format

* Feature data X (also observations, predictors):
n X p matrix x;
species/gene abundances in rows (i),
samples/patients in columns (j)

observations based on which we wish to make predictions
x; denotes the feature vector, i.e. abundance profile, for the i-th sample

- Label data y (also dependent variable, response):
vector of length n, containing binary values in our cases

the phenomenon which we wish to predict:
disease vs. healthy, response vs. non-response etc.

21



Ordination versus modelling (l)

Oral microbiomes can not be separated by PCA
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Ordination versus modelling (l)

ROC curves for LASSO models (each vs rest)
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A typical machine learning workflow

Data filtering Normalization Data splitting Model training Prediction / evaluation

. . . [Wirbel et al., Genome Biol. 2020]
Association testing Confounder testing

siamcat.embl.de

SIAMCAT

File formats supported:

Starting with SIAMCAT - phyloseq { ,@. MICR®BIOME
- BIOM Q@ ToolLs

> source("https://bioconductor.org/biocLite.R") - LEFSe *:_ "

> biocLite("SIAMCAT") - MaAsLin

> browseVignettes ("SIAMCAT")

- metagenomeSeq

This workflow is implemented in the SIAMCAT Bioconductor package, which we will

s explore in detail in the practical.



What to use as input (features)?

* Use your domain expertise to engineer features that are likely predictive of the
phenomenon of interest — microbiome examples:

» Species abundances (or higher / lower resolution taxonomic profiles)
* Metabolic pathway abundance (e.g. KEGG / CAZy maps)

* Functional gene annotations (GO terms, domains, ...)

* Orthologous gene families (COGs, eggNOG families, ...)

e Toxins, virulence factors, ABX resistance genes, ...

» Consider interpretability —
predictive species/metabolic pathways may be preferred over k-mers or log-ratios

» Importantly, do NOT use the label information for selecting features for modeling
(more on this later)
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Model evaluation (classification)

In many applications, classes aren’t equal — neither are errors!
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True condition

positive (“cancer”) negative (“healthy”)
positive
(“predicted to
Predicted have cancer”)
Condition negative

(“predicted not to
have cancer”)

True positive rate (TPR, sensitivity, recall) Precision (positive pred. value, PPV)

True negative rate (TNR, specificity) False discovery rate (FDR, 1 — precision)
False positive rate (FPR, 1 — specificity ) are both dependent on prevalence
are all independent of prevalence (fraction of positives in the population)

(fraction of positives in the population)

[these and more measures on en.wikipedia.org/wiki/Evaluation_of binary_classifiers]



Model evaluation Il - ROC curves
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Model evaluation Il - ROC curves

value of SVM decision function



Model evaluation Il - ROC curves
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ROC curves from single features / distances

« Enrichment of a species in disease group can be directly
quantified using ROC curves (disease biomarker).
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Model evaluation lll — assessing generalization
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What might seem a good idea at first: Minimizing the training error...
But with increasing flexibility, models will fit the training data better and better.

Better: maximize generalization to new data sets...
Since overfitting the training data will result in poor generalization (i.e. large test error)
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Here for illustration,
smoothing splines are
used where model
flexibility / complexity
increases with the
degree of the
polynomials.

[James, Witten, Hastie &
Tibshirani, Springer 2013]



Resampling data for external validation or cross validation

Some data needs to be reserved for model evaluation....
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Resampling data for external validation or cross validation

Some data — always! — needs to be reserved for model evaluation....

Validation on external data

I training set I test set |

total number of samples (split into 2 subsets)

Train model on training set
Test on test set
Assess error on test predictions
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Cross-validation (CV)

test set | training set

fold 1

I I fold 2

I I fold 3

I I fold 4

I fold 5

total number of samples (split into 5 subsets)

For each CV fold:
Train a model on training set
Predict on the test set
Either concatenate or average
predictions from (all) test sets to
estimate error
More efficient use of (training) data



Cross-validation pitfalls Il

« Cross validation works under the i.i.d. assumption (observations have the same
probability distribution and are mutually independent)
* E.g. a series of (fair or unfair) coin flips is i.i.d. as the next flip doesn’t depend on the previous ones.

* However, biological samples are rarely completely independent:

* Multiple time-point measurements from the same subject
or related subjects

» Spatial structure / dependencies between measurements

« Data (sets) are not always identically distributed

» Batch effects: e.g. experiments or diagnostic tests performed in different labs (by different technicians,
at different times, using different reagent lots, ...) may exhibit (subtle) distributional shifts
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Take home messages

* Model fitting is easy, model evaluation is not at all!
Understand the generalization assessed — consult experts!

- Beware of overfitting — especially on small data sets, especially with complex algorithms!
Typically N > 50, better > 100 per group is a requirement; start with simple algorithms first

- Trade off interpretability (white-box models) and maximal prediction accuracy wisely!

« Diagnostic application is relatively straightforward, but underlying mechanisms are
generally difficult to glean from models (predictability does NOT imply causality!)
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Outlook — disease classification using SIAMCAT
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[Wirbel et al., Genome Biol. 2020]



