

Machine learning / statistical modelling of metagenomic data

Project 3

Spring School Bioinformatics and computational approaches in Microbiology Alessio Milanese, Lukas Malfertheiner

Colorectal cancer example (continued)

- Collected stool samples from 46 colorectal cancer (CRC) patients and 60 healthy controls
- Used metagenomic sequencing and profiled gut bacterial species
- Can microbiome differences be used for non-invasive detection of cancer?
- How does metagenomic detection compare to standard noninvasive diagnostic test (FOBT)?

[Zeller*, Tap*, Voigt* et al., Mol. Syst. Biol. 2014]

A microbiome "signature" of colorecatal cancer

[Zeller*, Tap*, Voigt* et al., Mol. Syst. Biol. 2014]

Descriptive statistics versus statistical modeling

Hypothesis testing:

Could the observed difference also be observed by chance?

Modeling:

Given only the measurement, can we tell which group the measurement corresponds to?

 Recall that *P*-values depend on both effect size and sample size!

Why statistical modelling / machine learning?

- Modeling ideally extracts the essence of a biological phenomenon
- Model needed to make predictions on new data (necessary e.g. for microbiome-based diagnostics)
- Prediction accuracy is often a more meaningful measure of association than statistical significance of differences
- Suitable methods can select predictive taxa (and ignore others)
- Sparse statistical models are based on only "few" taxa, therefore useful for microbiome biomarker / signature extraction

$$y_i = f(\mathbf{x}_i) + \varepsilon$$

For *i* samples / patients y_i – label (e.g. disease or control), always binary herein x_i – features (e.g. species abundance profile, a vector) f – our model ϵ – modeling error

Introduction to notation and input data format

 Feature data X (also observations, predictors): n x p matrix x_{ij} species/gene abundances in rows (i), samples/patients in columns (j)

observations based on which we wish to make predictions \mathbf{x}_i denotes the feature vector, i.e. abundance profile, for the i-th sample

• **Label** data **y** (also dependent variable, response): vector of length n, containing binary values in our cases

the phenomenon which we wish to predict: disease vs. healthy, response vs. non-response etc.

Ordination versus modelling (I)

 Using PCoA (with various dissimilarity measures), it is difficult to resolve for each oral microbiome sample the precise sampling site.

Oral microbiomes can not be separated by PCA

Ordination versus modelling (I)

- Using PCoA (with various dissimilarity measures), it is difficult to resolve for each oral microbiome sample the precise sampling site.
- Statistical models, in contrast, can very accurately recognize sample origin.

False positive rate

ROC curves for LASSO models (each vs rest)

A typical machine learning workflow

This workflow is implemented in the SIAMCAT Bioconductor package, which we will explore in detail in the practical.

25

What to use as input (features)?

- Use your domain expertise to engineer features that are likely predictive of the phenomenon of interest – microbiome examples:
 - Species abundances (or higher / lower resolution taxonomic profiles)
 - Metabolic pathway abundance (e.g. KEGG / CAZy maps)
 - Functional gene annotations (GO terms, domains, ...)
 - Orthologous gene families (COGs, eggNOG families, ...)
 - Toxins, virulence factors, ABX resistance genes, ...
- Consider interpretability predictive species/metabolic pathways may be preferred over k-mers or log-ratios
- Importantly, do NOT use the label information for selecting features for modeling (more on this later)

Model evaluation (classification)

In many applications, classes aren't equal - neither are errors!

True positive rate (TPR, **sensitivity**, **recall**) True negative rate (TNR, **specificity**) False positive rate (FPR, 1 – specificity)

 are all independent of prevalence (fraction of positives in the population) Precision (positive pred. value, PPV) False discovery rate (FDR, 1 – precision)

 are both dependent on prevalence (fraction of positives in the population)

[these and more measures on en.wikipedia.org/wiki/Evaluation_of_binary_classifiers]

Model evaluation II – ROC curves

28

Model evaluation II – ROC curves

Model evaluation II – ROC curves

- Change decision threshold to obtain other trade-• offs between sensitivity and specificity
- Receiver operating characteristic (ROC) curve • plots all of them
- Area under the ROC curve as a summary statistic

28

value of SVM decision function

ROC curves from single features / distances

 Enrichment of a species in disease group can be directly quantified using ROC curves (disease biomarker).

 Separation between groups in terms of pairwise dissimilarities can also be assessed using ROC curves.

Distances (beta-diversity)

Distance histograms

Separation quantified by AUROC

Model evaluation III – assessing generalization

- What might seem a good idea at first: Minimizing the training error...
 But with increasing flexibility, models will fit the training data better and better.
- Better: maximize generalization to new data sets...
 Since overfitting the training data will result in poor generalization (i.e. large test error)

Here for illustration, smoothing splines are used where model flexibility / complexity increases with the degree of the polynomials.

[James, Witten, Hastie & Tibshirani, *Springer* 2013]

Resampling data for external validation or cross validation

Some data needs to be reserved for model evaluation....

Resampling data for external validation or cross validation

Some data – always! – needs to be reserved for model evaluation....

Validation on external data

training set	test set

- Train model on training set
- Test on test set
- Assess error on test predictions

Cross-validation (CV)

total number of samples (split into 5 subsets)

- For each CV fold:
 - Train a model on training set
 - Predict on the test set
- Either concatenate or average predictions from (all) test sets to estimate error
- More efficient use of (training) data

total number of samples (split into 2 subsets)

Cross-validation pitfalls II

- Cross validation works under the i.i.d. assumption (observations have the same probability distribution and are mutually independent)
 - E.g. a series of (fair or unfair) coin flips is i.i.d. as the next flip doesn't depend on the previous ones.
- However, biological samples are rarely completely independent:
 - Multiple time-point measurements from the same subject or related subjects
 - Spatial structure / dependencies between measurements
- Data (sets) are not always identically distributed
 - Batch effects: e.g. experiments or diagnostic tests performed in different labs (by different technicians, at different times, using different reagent lots, ...) may exhibit (subtle) distributional shifts

Take home messages

- Model fitting is easy, model evaluation is not at all!
 Understand the generalization assessed consult experts!
- Beware of overfitting especially on small data sets, especially with complex algorithms!
 Typically N > 50, better > 100 per group is a requirement; start with simple algorithms first
- Trade off interpretability (white-box models) and maximal prediction accuracy wisely!
- Diagnostic application is relatively straightforward, but underlying mechanisms are generally difficult to glean from models (predictability does NOT imply causality!)

Outlook – disease classification using SIAMCAT

www.siamcat.embl.de

[Wirbel et al., Genome Biol. 2020]